Вектор ШеплиВектор Шепли — принцип оптимальности распределения выигрыша между игроками в задачах теории кооперативных игр. Представляет собой распределение, в котором выигрыш каждого игрока равен его среднему вкладу в благосостояние тотальной коалиции при определенном механизме её формирования. Назван в честь американского экономиста и математика Ллойда Шепли.[1][2] Формальное определениеДля кооперативной игры рассмотрим некоторое упорядочение множества игроков . Обозначим через подмножество, содержащее первых игроков в данном упорядочении. Вкладом -го по счету игрока назовем величину , где — характеристическая функция кооперативной игры. Вектором Шепли кооперативной игры называется такое распределение выигрыша, в котором каждый игрок получает математическое ожидание своего вклада в соответствующие коалиции , при равновероятном возникновении упорядочений: где — количество игроков, — множество упорядочений множества игроков — распределение выигрыша, в котором игрок, стоящий на месте в упорядочении , получает свой вклад в коалицию (точка Вебера). Более распространенная формула для вычисления вектора Шепли, не требующая нахождения точек Вебера, имеет вид: где — количество игроков, — количество участников коалиции . Аксиоматика вектора ШеплиВектор Шепли удовлетворяет следующим свойствам: 1. Линейность. Отображение представляет собой линейный оператор, то есть для любых двух игр с характеристическими функциями и и для любой игры с характеристической функцией и для любого 2. Симметричность. Получаемый игроком выигрыш не зависит от его номера. Это означает, что если игра получена из игры перестановкой игроков, то её вектор Шепли есть вектор с соответствующим образом переставленными элементами. 3. Аксиома болвана. Болваном в теории кооперативных игр называется бесполезный игрок, не вносящий вклада ни в какую коалицию, то есть игрок такой, что для любой коалиции , содержащей , выполнено: . Аксиома болвана состоит в том, что если игрок — болван, то . 4. Эффективность. Вектор Шепли позволяет полностью распределить имеющееся в распоряжении тотальной коалиции благосостояние, то есть сумма компонент вектора равна . Теорема Шепли. Для любой кооперативной игры существует единственное распределение выигрыша, удовлетворяющее аксиомам 1 — 4, задаваемое приведенной выше формулой. ПриложенияОдним из современных приложений вектора Шепли в машинном обучении является оценка влияния отдельных признаков примера на прогнозируемое значение при решении задачи классификации[3] или регрессии[4]. Примечания
Литература
См. также
|