В частности, задачей выпуклого программирования является задача нахождения некоторого , на котором достигается
,
где целевая функция выпукла, как и множество допустимых решений [9][10]. Если такая точка существует, её называют оптимальной точкой. Множество всех оптимальных точек называется оптимальным множеством. Если не ограничена на или инфимум не достигается, говорят, что оптимизации не ограничена. Если же пусто, говорят о недопустимой задаче[11].
Стандартная форма
Говорят, что задача выпуклого программирования представлена в стандартной форме, если она записана как
Минимизировать
При условиях
где является переменной оптимизации, функции выпуклы, а функции аффинны[11].
В этих терминах функция является целевой функцией задачи, а функции и именуются функциями ограничений. Допустимое множество решений задачи оптимизации — это множество, состоящее из всех точек , удовлетворяющих условиям и . Это множество выпукло, поскольку множества подуровня выпуклой функции выпуклы, аффинные множества также выпуклы, а пересечение выпуклых множеств является выпуклым множеством[12].
Многие задачи оптимизации можно привести к этой стандартной форме. Например, задача максимизации вогнутой функции может быть переформулирована эквивалентно как задача минимизации выпуклой функции , так что о задаче максимизации вогнутой функции на выпуклом множестве часто говорят как о задаче выпуклого программирования
Свойства
Полезные свойства задач выпуклого программирования[13][11]:
Следующие классы задач являются задачами выпуклого программирования или могут быть сведены к задачам выпуклого программирования путём простых преобразований[11][14]:
Рассмотрим задачу выпуклой минимизации, заданную в стандартной форме с функцией цены и ограничениям-неравенствам для . Тогда область определения равна:
Функция Лагранжа для задачи
Для любой точки из , которая минимизирует на , существуют вещественные числа , называемые множителями Лагранжа, для которых выполняются одновременно условия:
минимизирует над всеми
по меньшей мере с одним
(дополняющая нежёсткость).
Если существует «сильная допустимая точка», то есть точка , удовлетворяющая
то утверждение выше может быть усилено до требования .
И обратно, если некоторое из удовлетворяет условиям (1)-(3) для скаляров с , то определённо минимизирует на .
Алгоритмы
Задачи выпуклого программирования решаются следующими современными методами:[15]
Субградиентные методы могут быть реализованы просто, потому они широко используются[18][19]. Двойственные субградиентные методы — это субградиентные методы, применённые к двойственной задаче. Метод сноса+штрафа[англ.] аналогичен двойственному субградиентному методу, но использует среднее по времени от основных переменных.
↑О методах выпуклого программирования см. книги Ирриарта-Уррути и Лемерикала (несколько книг) и книги Рушчиньского, Берцекаса, а также Бойда и Вандерберге (методы внутренней точки).
Yurii Nesterov, Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. — Society for Industrial and Applied Mathematics, 1995. — ISBN 978-0898715156.
Yurii Nesterov, Arkadii Nemirovskii. Interior Point Polynomial Methods in Convex Programming. — SIAM, 1994. — Т. 13. — (Studies in Applied and Numerical Mathematics). — ISBN 978-0-89871-319-0.
Yurii Nesterov. Introductory Lectures on Convex Optimization. — Boston, Dordrecht, London: Kluwer Academic Publishers, 2004. — Т. 87. — (Applied Optimisation). — ISBN 1-4020-7553-7.
Jiming Peng, Cornelis Roos, Tamás Terlaky. Self-regular functions and new search directions for linear and semidefinite optimization // Mathematical Programming. — 2002. — Т. 93, вып. 1. — ISSN0025-5610. — doi:10.1007/s101070200296.
Dimitri P. Bertsekas, Angelia Nedic, Asuman Ozdaglar. Convex Analysis and Optimization. — Athena Scientific, 2003. — ISBN 978-1-886529-45-8.
Dimitri P. Bertsekas. Convex Optimization Theory. — Belmont, MA.: Athena Scientific, 2009. — ISBN 978-1-886529-31-1.
Dimitri P. Bertsekas. Convex Optimization Algorithms. — Belmont, MA.: Athena Scientific, 2015. — ISBN 978-1-886529-28-1.
Jonathan M. Borwein, Adrian Lewis. Convex Analysis and Nonlinear Optimization. — Springer, 2000. — (CMS Books in Mathematics). — ISBN 0-387-29570-4.
Peter W. Christensen, Anders Klarbring. An introduction to structural optimization. — Springer Science & Businees Media, 2008. — Т. 153. — ISBN 9781402086663.
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal. Fundamentals of Convex analysis. — Berlin: Springer, 2004. — (Grundlehren text editions). — ISBN 978-3-540-42205-1.
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal. Convex analysis and minimization algorithms, Volume I: Fundamentals. — Berlin: Springer-Verlag, 1993. — Т. 305. — С. xviii+417. — ISBN 978-3-540-56850-6.
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal. Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods. — Berlin: Springer-Verlag, 1993. — Т. 306. — С. xviii+346. — ISBN 978-3-540-56852-0.
Claude Lemaréchal.Lagrangian relaxation // Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000. — Berlin: Springer-Verlag, 2001. — Т. 2241. — С. 112–156. — ISBN 978-3-540-42877-0. — doi:10.1007/3-540-45586-8_4.
Andrzej Ruszczyński. Nonlinear Optimization. — Princeton University Press, 2006.
Еремин И. И., Астафьев Н. Н. Введение в теорию линейного и выпуклого программирования. - М., Наука, 1976. - 189 c.