Нанометрология (англ.nanometrology) — раздел метрологии, включающий разработку теории, методов и инструментов для измерения параметров объектов, линейные размеры которых находятся в нанодиапазоне, то есть от 1 до 100 нанометров.
Нанометрология включает в себя теоретические и практические аспекты метрологического обеспечения единства измерений в нанотехнологиях, в том числе: эталоны физических величин и эталонные установки, стандартные образцы сравнения; стандартизованные методики измерений физико-химических параметров и свойств объектов нанотехнологий, а также методы калибровки самих средств измерений, применяемых в нанотехнологиях; метрологическое сопровождение технологических процессов производства материалов, структур, объектов и иной продукции нанотехнологий.
Особенности нанообъектов
Нанообъекты обладают рядом особенностей, определяющими и значимость нанотехнологий, и обособленность нанометрологии как отдельного раздела метрологии. Эти особенности связаны с размером нанообъектов и включают в себя:
Принципиальная невозможность рассмотреть отдельные нанообъекты классическими оптическими методами;
Взаимодействие с биологическими системами, включая белки, РНК, ДНК;
Развитая поверхность (высокая доля приповерхностного слоя в общем объёме нанообъекта) и т.д.
Из-за особенностей нанообъектов к ним неприменимы некоторые классические методы измерений, например, основанные на визуальном контакте с объектом. Кроме того, измерение уникальных свойств нанообъектов возможно только на основе методов, позволяющих эти уникальные свойства взять в расчёт.
Калибровка
При калибровке в нанометровом масштабе необходимо учитывать влияние таких факторов как: вибрации, шум, перемещения, вызываемые тепловым дрейфом и ползучестью, нелинейное поведение и гистерезиспьезосканера,[1] а также ведущее к значительным погрешностям взаимодействие между поверхностью и прибором.
Методы и приборы нанометрологии
Растровый электронный микроскоп, РЭМ (англ.Scanning Electron Microscope, SEM) — псевдотрёхмерная визуализация поверхности, линейные размеры, картрирование поверхности и объектов на ней по составу, строению, люминесцентным свойствам с разрешением порядка 1-10 нм.
Просвечивающий электронный микроскоп, ПЭМ (англ.Transmission Electron Microscope, TEM) — структура нанообъектов на просвет (электронным пучком) и их фазовый состав с субатомарным разрешением.
Атомно-силовой микроскоп, АСМ (англ.Atomic-Force Microscope, AFM) — рельеф поверхности с разрешением вплоть до атомарного, картрирование поверхности по электромагнитным свойствам.
Автоионный и автоэлектронный проектор (англ.Field Ion Microscope, Field Emission Microscope) — изображение поверхности проводящих твёрдых тел, имеющих форму острой иглы, с атомарным разрешением.
Акустическая спектроскопия, АС (англ.Acoustic Spectroscopy, AS) — характеризация диаметра частиц в диапазоне от доли нанометров до микрометров и их концентрации с точки зрения их поведения в суспензии под действием градиента давления ультразвуковых волн, определение дзета-потенциала частиц. Подходит для концентрированных непрозрачных суспензий. Характеризация пористых материалов.
Эллипсометрия (англ.Ellipsometry) — определение толщины тонких плёнок, в т.ч. нанометровых.
Метод БЭТ, Метод BJH (англ.BET theory, BJH) — определение удельной площади поверхности вещества в газовой среде, в т.ч. нанообъектов с развитой поверхностью и пористых материалов.
ЯМР-спектроскопия (англ.NMR spectroscopy) — химический состав веществ, в т.ч. учёт доли вещества на границе фаз.
Достижение единства измерений в макромасштабе достаточно простая задача, для решения которой используются: штриховые меры длины, лазерные интерферометры, калибровочные ступеньки, поверочные линейки и т. п. В нанометровом масштабе в качестве меры длины, позволяющей реализовать единство измерений, удобно использовать кристаллическую решёткувысокоориентированного пиролитического графита (ВОПГ), слюды или кремния.[2][3]