Полярон
Поляро́н — квазичастица в кристалле, состоящая из электрона и сопровождающего его поля упругой деформации (поляризации) решётки. Медленно движущийся электрон в диэлектрическом кристалле, взаимодействующий с ионами решётки через дальнодействующие силы, будет постоянно окружён областью решёточной поляризации и деформации, вызванной движением электрона. Двигаясь через кристалл, электрон проводит решёточную деформацию, потому можно говорить о наличии облака фононов, сопровождающего электрон. Характер поляризации и энергия связи электрона с решёткой отличаются в металлах, полупроводниках и ионных кристаллах. Это связано с типом связи и скоростью движения электронов в решётке. Понятие о поляроне введено советским физиком С. И. Пекаром в 1946 году, им же впоследствии была развита их теория[3][4][5]. Эта теория основывается на электростатическом взаимодействии электрона проводимости на длинноволновые оптические фононы. Поляроны в металлахПоляризация решётки осуществляется не всеми электронами, а только фермиевскими электронами. В простейшем случае, для квадратичной дисперсии и сферической поверхности Ферми, эффективная масса фермиевских электронов ( — масса свободного электрона), а их скорость близка к скорости Ферми м/с. Принято говорить, что электрон в кристаллической решётке окружён «облаком» виртуальных фононов с дебаевской частотой. Чем больше поляризация, тем больше рождается виртуальных фононов. и тем сильнее связь электрона с решёткой. Энергия связи электрона с решёткой определяется константой электрон-фононного взаимодействия : Коэффициент учитывает существование трёх ветвей спектра фононов, а — дебаевская частота. Электрон-фононное взаимодействие приводит к тому, что масса полярона становится больше массы «голого» электрона Таким образом, поляроны в металлах являются отрицательно заряженными с зарядом и эффективной массой [6]. Поляроны в полупроводникахВ полупроводниках с ковалентной связью продольные оптические колебания слабо влияют на электроны и дырки, так как кристаллическая решётка состоит из нейтральных атомов, и продольные колебания не поляризуют решётку. Константа электрон-фононного взаимодействия в таких веществах слишком мала () для образования поляронов, и параметры зонного спектра и носителей заряда в полупроводниках не перенормируются в результате поляронного взаимодействия[7]. Поляроны в ионных кристаллахРешётка ионных кристаллов образована положительно и отрицательно заряженными ионами, удерживаемыми вместе за счёт сил электростатического взаимодействия. Концентрация свободных электронов настолько мала, что электронный газ всегда невырожден, поэтому электроны и фононы находятся в тепловом равновесии. Поэтому при понижении температуры в ионных кристаллах может возникнуть автолокализация электронов в собственных потенциальных ямах за счёт притяжения к положительным ионам и отталкивания от отрицательных. При этом отрицательные и положительные ионы смещаются в противоположных направлениях, что эквивалентно возбуждению продольных оптических фононов, длина волны которых может варьироваться в широких пределах. Электроны эффективно взаимодействуют только с продольными оптическими колебаниями, длина волны которых больше расстояния, которое проходит электрон за период колебаний решётки, так как только в этом случае происходит изменение плотности кристалла, образование связанных электрических зарядов и поляризационного поля[8]. Различают поляроны большого и малого радиуса. Чем сильнее электрон поляризует решётку, тем больше эффективная зона поляризации и больше эффективная масса полярона. Размер полярона определяется соотношением между размером возмущенной области кристалла (радиусом полярона ) и постоянной решетки . Различают поляроны малого радиуса (при )[1], промежуточного радиуса (), большого радиуса ().[2] Спин полярона не зависит от радиуса и равен 1/2. Поляроны малого радиусаНеподвижный электрон, помещённый в кристалл, поляризует кристаллическую решётку. Энергия поляризации равна где , а и — статическая и высокочастотная диэлектрические проницаемости соответственно. При характерных значениях , , нм энергия поляризации равна эВ. Суммарная энергия полярона малого радиуса равна где — потенциальная энергия локализованного электрона, а — характерный радиус полярона. За счёт поляризации ионов решётки возбуждаются оптические фононы, поэтому эффективность поляризации можно характеризовать константой электрон-фононной связи , характеризующая число оптических фононов, возбуждённых в решётке. Если — ширина электронной зоны, характеризующая кинетическую энергию электронов, то полярон может образоваться лишь при условии , и температура, ниже которой образуется полярон, задаётся соотношением Поэтому образование поляронов возможно только в достаточно узкозонных кристаллах с характерным значением эВ. При образовании поляронов электронная зона сильно сужается и образуется поляронная зона шириной , которую можно оценить по формуле При типичных энергиях полярона эВ и оптического фонона эВ величина и ширина поляронной зоны эВ, что на четыре порядка меньше исходной электронной зоны. Поэтому такая узкая зона реализуется только в идеальных совершенных кристаллах, любые нарушения кристалличности приводят к локализации таких поляронов. При полярон малого радиуса перемещается термически активированными скачками с энергией активации порядка энергии полярона. Подвижность поляронов растёт приблизительно экспоненциально с ростом температуры[9]. Поляроны большого радиусаВ отличие от поляронов малого радиуса, поляроны большого радиуса образуются в ионных кристаллах с широкой зоной проводимости , и константа электрон-фононной связи определяется выражением При образуется полярон большого радиуса, а при слабой электрон-фононной связи () электрон поляризует решётку, но не локализуется в созданной им поляризационной яме. Расчёты дают выражения для массы и энергии полярона большого радиуса: Для реальных кристаллов наиболее интересна область промежуточных значений . При этих значениях нельзя получить аналитических выражений, но численные расчёты показывают, что предыдущие две формулы справедливы до . Полная энергия полярона большого радиуса равна что в два раза меньше, чем аналогичная энергия для полярона малого радиуса[10]. Подвижность поляроновПоляроны большого радиуса не меняют качественно зонный спектр кристалла, их подвижность уменьшается обратно пропорционально увеличению их эффективной массы, перенормируются также их плотность состояний и скорость. У поляронов малого радиуса подвижность сильно зависит от температуры. Если при низких температурах волновые функции поляронов перекрываются, то это приводит к образованию поляронной зоны с обычным зонным механизмом проводимости. При повышении температуры образуется система локализованных поляронов, и зонный механизм сменяется прыжковым. Прыжковую проводимость можно рассматривать как диффузную проводимость
где [11]. Структура поляроновВ реальности поляроны имеют внутреннюю структуру, так как поляронные потенциальные ямы при сильном электрон-фононном взаимодействии образуются из набора оптических фононов с разными длинами волн. Поляронные ямы могут иметь несколько уровней энергии, соответствующих разным распределениям заряда и различным радиусам. Эти уровни могут размываться в зоны вследствие конечности времени существования полярона или в результате того, что параметры поляронных ям варьируются из-за неоднородности вещества. Также поляроны исчезают в сильных электрических полях, так как скорость полярона не может быть больше групповой скорости продольных оптических фононов. При увеличении дрейфовой скорости электрон отрывается от потенциальной ямы, и она исчезает[12]. БиполяроныВ некоторых веществах два полярона с одинаковыми зарядами могут взаимно связываться, образуя биполярон. Биполярон представляет собой квазичастицу, состоящую из двух электронов, лежащих в общей потенциальной яме. Заряд биполярона равен либо соответственно заряду объединившихся поляронов, а спин в основном -состоянии равен нулю. То есть биполяроны могут образовывать бозе-конденсат, так как подчиняются статистике Бозе — Эйнштейна[13]. Примечания
Литература
|