Рефлексивное отношение в математике — бинарное отношение на множестве, при котором всякий элемент этого множества находится в отношении с самим собой[1].
Формально, отношение рефлексивно, если .
Свойство рефлексивности отношения при задании матрицей характеризуется тем, что все диагональные элементы матрицы равняются 1; при задании отношения графом каждый элемент х имеет петлю — дугу (х, х).
Бинарное отношение на множестве является рефлексивным тогда и только тогда, когда его подмножеством является тождественное отношение на множестве (), то есть .
Если не имеет смысла, то отношение называется антирефлексивным (или иррефлексивным)[1].
Если антирефлексивное отношение задано матрицей, то все диагональные элементы являются нулевыми. При задании такого отношения графом каждая вершина не имеет петли — нет дуг вида (х, х).
Формально антирефлексивность отношения определяется как: .
Если условие рефлексивности выполнено не для всех элементов множества , говорят, что отношение нерефлексивно.