Статистическая суммаСтатистическая сумма (или статсумма) (обозначается , от нем. Zustandssumme — сумма по состояниям) — это нормировочный коэффициент в знаменателе соответствующего статистического (вероятностного) распределения, при котором интегральная сумма этого вероятностного распределения (т.е. полная вероятность) по всем возможным состояниям равна 1. Статистическая сумма - важная величина в термодинамике и статистической физике, содержащая информацию о статистических свойствах системы в состоянии термодинамического равновесия. Она может являться функцией температуры и других параметров, таких как объём. Многие термодинамические величины системы, такие как энергия, свободная энергия, энтропия и давление, могут быть выражены через статистическую сумму и её производные. Статистическая сумма в каноническом ансамблеОпределениеПредположим, что имеется подчиняющаяся законам термодинамики система, находящаяся в постоянном тепловом контакте со средой, которая имеет температуру , а объём системы и количество составляющих её частиц фиксированы. В такой ситуации система относится к каноническому ансамблю. Обозначим точные состояния, в которых может находиться система, через , а полную энергию системы в состоянии — . Как правило, эти микросостояния можно рассматривать как дискретные квантовые состояния системы. Каноническая статистическая сумма — это где обратная температура определена как а — это постоянная Больцмана. В классической статистической механике было бы некорректно определять статистическую сумму в виде суммы дискретных членов, как в приведённой выше формуле. В классической механике координаты и импульсы частиц могут меняться непрерывно, и множество микросостояний несчётно. В таком случае необходимо провести разбиение фазового пространства на ячейки, то есть два микросостояния считаются одинаковыми, если их различия в координатах и импульсах «не слишком велики». При этом статистическая сумма принимает вид интеграла. Например, статистическая сумма газа из классических частиц равна где — некоторая величина размерности действия (которая должна быть равна постоянной Планка для соответствия квантовой механике), а — классический гамильтониан. Причины появления множителя объяснены ниже. Для простоты в этой статье будет использоваться дискретный вид статистической суммы, но полученные результаты в равной мере относятся и к непрерывному виду. В квантовой механике статистическая сумма может быть записана более формально как след по пространству состояний (который не зависит от выбора базиса): где — оператор Гамильтона. Экспонента от оператора определяется с помощью разложения в степенной ряд. Смысл и значимостьСначала рассмотрим, от чего она зависит. Статистическая сумма является функцией температуры , а также энергий микросостояний и т. д. Энергии микросостояний определяются другими термодинамическими величинами, такими как число частиц и объём, а также микроскопическими свойствами, такими как масса частиц. Эта зависимость от микроскопических свойств является основной в статистической механике. По модели микроскопических составляющих системы можно рассчитать энергии микросостояний, а следовательно, и статистическую сумму, которая позволяет рассчитать все остальные термодинамические свойства системы. Статистическая сумма может быть использована для расчёта термодинамических величин, поскольку она имеет очень важный статистический смысл. Вероятность , с которой система находится в микросостоянии , равна Статистическая сумма входит в распределение Гиббса в виде нормировочного множителя (она не зависит от ), обеспечивая равенство единице суммы вероятностей: Вычисление термодинамической полной энергииЧтобы продемонстрировать полезность статистической суммы, рассчитаем термодинамическое значение полной энергии. Это просто математическое ожидание, или среднее по ансамблю значение энергии, равное сумме энергий микросостояний, взятых с весами, равными их вероятностям: или, что то же самое Можно также заметить, что если энергии микросостояний зависят от параметра как для всех , то среднее значение равно На этом основан приём, позволяющий вычислить средние значения многих микроскопических величин. Нужно искусственно добавить эту величину к энергии микросостояний (или, на языке квантовой механики, к гамильтониану), вычислить новую статистическую сумму и среднее значение, а затем в итоговом выражении положить равным нулю. Аналогичный метод применяется в квантовой теории поля. Связь с термодинамическими величинамиВ этом разделе приведена связь статистической суммы с различными термодинамическими параметрами системы. Эти результаты могут быть получены с помощью метода, описанного в предыдущем разделе, и различных термодинамических соотношений. Как мы уже видели, энергия равна Флуктуация энергии равна Теплоёмкость равна Энтропия равна где — свободная энергия, определяемая как , где — полная энергия, а — энтропия, так что Статистическая сумма подсистемПредположим, что система состоит из подсистем, взаимодействие между которыми пренебрежимо мало. Если статистические суммы подсистем равны , то статистическая сумма всей системы равна произведению отдельных статистических сумм: Если подсистемы обладают одинаковыми физическими свойствами, то их статистические суммы одинаковы: , и в этом случае Из этого правила, однако, есть одно известное исключение. Если подсистемы — это тождественные частицы, то есть, исходя из принципов квантовой механики, их невозможно различить даже в принципе, общая статистическая сумма должна быть разделена на : Это делается, чтобы не учитывать одно и то же микросостояние несколько раз. Статистическая сумма большого канонического ансамбляОпределениеАналогично канонической статистической сумме для канонического ансамбля, можно определить большую каноническую статистическую сумму для большого канонического ансамбля — системы, которая может обмениваться со средой и теплотой, и частицами, и имеет постоянную температуру , объём и химический потенциал . Большая каноническая статистическая сумма, хотя и более сложна для понимания, упрощает расчёт квантовых систем. Большая каноническая статистическая сумма для квантового идеального газа записывается как: где — общее количество частиц в объёме , индекс пробегает все микросостояния системы, — число частиц в состоянии , а — энергия в состоянии . — всевозможные наборы чисел заполнения каждого микросостояния, такие что . Рассмотрим, например, слагаемое, соответствующее . Один из возможных наборов чисел заполнения будет , он даёт вклад в слагаемое с , равный Для бозонов числа заполнения могут принимать любые целые неотрицательные значения при том, что их сумма равна . Для фермионов, в соответствии с принципом запрета Паули, числа заполнения могут быть равны только 0 или 1, но их сумма опять же равна . Частные случаиМожно показать, что указанное выражение для большой канонической статистической суммы математически эквивалентно следующему: (Это произведение иногда берётся по всем значениям энергии, а не по отдельным состояниям, и в этом случае каждая отдельная статистическая сумма должна быть возведена в степень , где — число состояний с такой энергией. также называется степенью вырождения.) Для системы, состоящей из бозонов: а для системы, состоящей из фермионов: В случае максвелловско-больцмановского газа необходимо корректно подсчитывать состояния и делить больцмановский множитель на Связь с термодинамическими величинамиТак же как и каноническая статистическая сумма, большую каноническую статистическую сумму можно использовать для вычисления термодинамических и статистических величин системы. Как и в каноническом ансамбле, термодинамические величины не фиксированы, а статистически распределены вокруг среднего значения. Обозначая , получаем средние значения чисел заполнения: Для больцмановских частиц это даёт: Для бозонов: Для фермионов: что совпадает с результатами, получаемыми с помощью канонического ансамбля для статистики Максвелла — Больцмана, статистики Бозе — Эйнштейна и статистики Ферми — Дирака соответственно. (Степень вырождения отсутствует в этих уравнениях, поскольку индекс нумерует отдельные состояния, а не уровни энергии.) Общее число частиц Флуктуация общего числа частиц Внутренняя энергия Флуктуация внутренней энергии Механическое уравнение состояния Литература
|