Теорема Жордана — классическая теорема топологии, гласящая, что замкнутая плоская кривая без самопересечений делит плоскость на две различные части: «внутреннюю» и «внешнюю».
Теорема Жордана известна контрастом между простотой её формулировки и сложностью доказательства. Такой контраст в первую очередь связан с существованием «диких» кривых, таких как замкнутые кривые Осгуда. В случае кривых специального вида, таких как ломаные, утверждение доказывается относительно просто[1].
Замкнутые кривые, удовлетворяющие условию теоремы Жордана, называются жордановыми.
Некоторые авторы утверждают, что доказательство Жордана не было вполне исчерпывающим, а первое полное доказательство было дано Освальдом Вебленом в 1905 году[2]. Однако Томас Хейлс[англ.] пишет, что доказательство Жордана не содержит ошибок, и единственная возможная претензия по отношению к этому доказательству состоит в том, что Жордан предполагает известным утверждение теоремы в случае ломаных[3].
Из двух таких компонент ровно одна является ограниченной. Ограниченная компонента называется внутренней частью кривой , а неограниченная — внешней.
Данные компоненты можно охарактеризовать в терминах порядка точки относительно кривой. А именно, множество точек плоскости, порядок которых относительно кривой равен или , совпадает с её внутренней частью, а множество точек, порядок которых равен , совпадает с внешней часть.
Согласно теореме Шёнфлиса, внутренняя часть кривой гомеоморфна кругу[4].
О доказательствах
Известно несколько простых доказательств теоремы Жордана.
Теорема Шёнфлиса утверждает, что существует гомеоморфизм плоскости в себя, переводящий данную Жорданову кривую в окружность.
В частности ограниченная компонента в теореме Жордана гомеоморфна единичному диску, а неограниченная компонента гомеоморфна внешности единичного диска.
Пример дикой сферы показывает, что аналогичное утверждение не верно в старших размерностях.
См. также
Озёра Вады — патологический пример, показывающий нетривиальность теоремы Жордана.