Электромагнитное взаимодействиеЭлектромагни́тное взаимоде́йствие или электромагнетизм — одно из четырёх фундаментальных взаимодействий. Существует между частицами, обладающими электрическим зарядом[1]. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля[2]. С точки зрения квантовой теории поля[3] электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Сам фотон электрическим зарядом не обладает, но может взаимодействовать с другими фотонами путём обмена виртуальными электрон-позитронными парами. Из фундаментальных частиц в электромагнитном взаимодействии участвуют также имеющие электрический заряд частицы: кварки, электрон, мюон и тау-лептон (из фермионов), а также заряженные калибровочные W±-бозоны. Остальные фундаментальные частицы Стандартной Модели (все типы нейтрино, бозон Хиггса и переносчики взаимодействий: калибровочный Z0-бозон, фотон, глюоны) электрически нейтральны. Электромагнитное взаимодействие отличается от слабого[4] и сильного[5] взаимодействия своим дальнодействующим характером — сила взаимодействия между двумя зарядами спадает только как вторая степень расстояния (см.: закон Кулона). По такому же закону спадает с расстоянием гравитационное взаимодействие. Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного, и единственная причина, по которой электромагнитное взаимодействие не проявляется с большой силой в космических масштабах — электрическая нейтральность материи, то есть наличие в каждой области Вселенной с высокой степенью точности равных количеств положительных и отрицательных зарядов. В классических (неквантовых) рамках электромагнитное взаимодействие описывается классической электродинамикой. СвойстваВ электромагнитном взаимодействии могут принимать участие только объекты, обладающие электрическим зарядом (в том числе и нейтральные в целом, но состоящие из заряженных частиц). Таковыми являются большинство известных фундаментальных элементарных частиц, в частности, все кварки, все заряженные лептоны (электрон, мюон и тау-лептон), а также заряженные калибровочные бозоны W±. По современным представлениям электромагнитное взаимодействие осуществляется через электромагнитное поле, кванты которого — фотоны — являются переносчиками электромагнитного взаимодействия[6]. В отличие от слабого и сильного взаимодействий, электромагнитное взаимодействие так же, как и гравитационное, является дальнодействующим. В частности, сила притяжения неподвижных противоположно заряженных тел спадает на больших расстояниях степенным образом — по закону обратного квадрата (см. закон Кулона). Дальнодействие электромагнитных сил обусловлено отсутствием массы у фотонов как переносчиков этого взаимодействия[6]. В микромире интенсивность (эффективное сечение) электромагнитного взаимодействия характеризуется величиной постоянной тонкой структуры (в СГСЭ):
где — элементарный электрический заряд, — постоянная Планка, — скорость света в вакууме. На уровне ядерных реакций по «силе» электромагнетизм занимает промежуточное положение между сильным и слабым взаимодействиями. Характерные времена распадов, вызванных электромагнитным взаимодействием, — около 10−12 — 10−20 с, в то время, как для сильного взаимодействия — порядка 10−23 с, а для слабого — 103 — 10−13 с. В качестве примера можно привести сравнение сечения рассеяния на протоне фотона с энергией 1 ГэВ и пиона с соответствующей полной энергией в системе центра масс. Для пиона, взаимодействие которого с протоном обусловлено сильным взаимодействием, сечение в 10 000 раз больше[6]. Электромагнитное взаимодействие сохраняет пространственную чётность (так называемую Р-чётность), зарядовую чётность (так называемую C-чётность), а также такие квантовые числа, как странность, очарование, красота. Это отличает электромагнетизм от слабого взаимодействия. Одновременно, в отличие от сильного взаимодействия, электромагнитное взаимодействие в процессах с адронами не сохраняет изотопический спин (сопровождаясь испусканием фотона, он может меняться на ±1 или 0) и нарушает G-чётность[6]. Наличие законов сохранения с учётом свойств фотонов накладывает определённые правила отбора на процессы с участием электромагнитного взаимодействия. Например, поскольку спин фотона равен 1, запрещены излучательные переходы между состояниями с нулевым моментом импульса. Необходимость сохранять зарядовую чётность приводит к тому, что системы с положительной зарядовой чётностью распадаются с испусканием только чётного количества фотонов, а с отрицательной зарядовой чётностью — только нечётного. В частности, парапозитроний распадается на два фотона, а ортопозитроний — на три (см. позитроний)[6]. Роль в природеЗа счёт дальнодействия электромагнитное взаимодействие заметно проявляется как на макроскопическом, так и на микроскопическом уровнях. Фактически, подавляющее большинство физических сил в классической механике — силы упругости, силы трения, силы поверхностного натяжения и т. д. — имеют электромагнитную природу[6]. Электромагнитное взаимодействие определяет большинство физических свойств макроскопических тел и, в частности, изменение этих свойств при переходе из одного агрегатного состояния в другое. Электромагнитное взаимодействие лежит в основе химических превращений. Электрические, магнитные и оптические явления также сводятся к электромагнитному взаимодействию[6]. На микроскопическом уровне электромагнитное взаимодействие (с учётом квантовых эффектов) определяет структуру электронных оболочек атомов, структуру молекул, а также более крупных молекулярных комплексов и кластеров. В частности, величина элементарного электрического заряда определяет размеры атомов и длину связей в молекулах. Например, радиус Бора равен , где — электрическая постоянная, — постоянная Планка, — масса электрона, — элементарный электрический заряд[6]. Теоретическое описаниеКлассическая электродинамикаВ большинстве случаев макроскопические электромагнитные процессы с необходимой степенью точности могут быть описаны в рамках классической электродинамики. В этом случае взаимодействующие объекты рассматриваются как совокупность материальных точек, характеризуемых помимо массы также и электрическим зарядом. При этом полагается, что взаимодействие осуществляется посредством электромагнитного поля — отдельным видом материи, пронизывающим всё пространство. ЭлектростатикаЭлектростатика рассматривает взаимодействие неподвижных заряженных тел. Основным законом электростатики является закон Кулона, устанавливающий связь между силой притяжения/отталкивания двух заряженных материальных точек, величиной их заряда и расстоянием между ними. В математической форме закон Кулона имеет вид[7]: где — сила, с которой частица 1 действует на частицу 2, — величины зарядов частиц 1 и 2 соответственно, — радиус-вектор, проведённый из точки расположения частицы 1 в точку расположения частицы 2 ( — модуль этого вектора), — размерный коэффициент, значение которого зависит от используемой системы единиц, в СГС он равен 1, в СИ: где — электрическая постоянная. В рамках электростатики величина электрического поля, создаваемого точечным зарядом, определяется выражением[7]: где — напряжённость электрического поля в данной точке, — величина заряда частицы, создающей это поле, — радиус-вектор, проведённый из точки расположения частицы в точку, где определяется поле ( — модуль этого вектора). Сила, действующая на заряженную частицу, помещённую в электрическое поле, определяется выражением: где — величина электрического заряда частицы, — векторная сумма напряжённостей электрических полей, созданных всеми частицами (за исключением рассматриваемой) в точке, где находится частица[7]. В случае, если заряд распределён в некотором объёме с плотностью , то электростатическое поле, создаваемое им, может быть найдено из электростатической теоремы Гаусса, имеющей в дифференциальной форме в системе СГС следующий вид[8]: В присутствии поляризуемой диэлектрической среды величина электрического поля, создаваемого свободными зарядами, изменяется из-за влияния связанных зарядов, входящих в состав среды. Это изменение во многих случаях может быть охарактеризовано посредством введения вектора поляризации среды и вектора электрической индукции При этом выполняется следующее соотношение[9]: Теорема Гаусса в этом случае записывается в виде[9]: где под понимается плотность только свободных зарядов. В большинстве случаев рассматриваемые поля значительно слабее внутриатомных полей, поэтому справедлива линейная связь между вектором поляризации и напряжённостью электрического поля в данной точке. Для изотропных сред математически этот факт выражается следующим равенством[10]: где — коэффициент, характеризующий поляризуемость данного диэлектрика при данных температуре и давлении. Аналогично, справедлива линейная связь между напряжённостью и индукцией[10]: где коэффициент носит название диэлектрической проницаемости[10]. С учётом поляризуемой среды приведённые выше формулы для силы электростатического взаимодействия и напряжённости электростатического поля принимают вид[11]: МагнитостатикаМагнитостатика изучает взаимодействие постоянных по величине и неподвижных в пространстве электрических токов, представляющих по своей сути поток заряженных частиц. В основе магнитостатики лежат закон Био — Савара — Лапласа и закон Ампера. Закон Био — Савара — Лапласа позволяет находить величину магнитного поля, создаваемого малым элементом тока. Если имеется линейный элемент тока длиною сила тока в котором равна то он создаёт в окружающем пространстве магнитное поле, индукция которого определяется выражением[12]: где — радиус-вектор, проведённый от точки расположения элемента тока до точки пространства, в которой определяется магнитное поле ( — модуль этого радиус-вектора), — вектор, длина которого равна а направление совпадает с направлением тока (считая, что направление тока определяется движением положительно заряженных частиц), — константа, зависящая от выбора системы единиц: в системе СИ ( — магнитная постоянная), в системе СГС ( — скорость света в вакууме). Знаком × в квадратных скобках здесь и ниже обозначается векторное произведение. Закон Ампера определяет величину силы, с которой магнитное поле в данной точке действует на элемент тока[13]: где — величина магнитного поля в данной точке, равная векторной сумме магнитных полей, создаваемых всеми другими токами, — коэффициент, зависящий от выбранной системы единиц: в системе СИ он равен единице, в системе СГС — ( — скорость света в вакууме). Закон Ампера является прямым следствием выражения для магнитной составляющей силы Лоренца — силы, с которой электромагнитное поле действует на заряженную частицу[14]: где — заряд частицы, — её скорость. Закон Био — Савара — Лапласа может быть переписан в виде для плотности тока [15]: где — объём элемента объёмного тока, создающего поле. Из этой формы закона Био — Савара — Лапласа можно вывести теорему о циркуляции магнитной индукции, которая в дифференциальной форме принимает вид[16]: В присутствии магнитной среды (то есть среды, способной к намагничиванию) её влияние характеризуется векторами намагниченности среды и напряжённости магнитного поля При этом справедлива связь: В линейных изотропных средах справедлива простая связь между величиной намагниченности и приложенным магнитным полем (физически более правильным было бы связывать намагниченность с величиной магнитной индукции, однако по историческим причинам её выражают обычно через напряжённость магнитного поля — ввиду линейной связи между величинами и принципиального значения это не имеет)[19][20]: где коэффициент называется магнитной восприимчивостью среды. Часто оперируют также величиной магнитной проницаемости определяемой как: В этом случае справедливы соотношения: Ферромагнетики являются принципиально нелинейными средами, в частности, они подвержены явлению гистерезиса, и поэтому простые соотношения, указанные выше, для них несправедливы. Теорема о циркуляции в магнитных средах принимает следующий вид[18]: Уравнения Максвелла
Квантовая электродинамика
История теорииАнтичные представления об электричестве и магнетизме Первые упоминания об электрических и магнитных явлениях встречаются ещё в трудах древнегреческих учёных VI-III веков до нашей эры. Так, Фалес Милетский в VI веке до н.э. обратил внимание на способность натёртого янтаря притягивать лёгкие предметы. Он связывал это явление с особым "электрическим духом", заключённым в янтаре. В V веке до н.э. Демокрит выдвинул предположение, что частицы, составляющие магнит, имеют определённую ориентацию, позволяющую им притягиваться друг к другу. Аристотель в IV веке до н.э. описал способность магнита притягивать железные предметы и предложил считать магнетизм особым "качеством" материи. Несмотря на первоначальные наблюдения, в античный период электрические и магнитные явления рассматривались лишь как курьёзные свойства некоторых природных материалов. Систематическое изучение электричества и магнетизма началось значительно позже. Развитие электростатики и гальванизма Существенный прогресс в изучении электрических явлений был достигнут в XVII-XVIII веках. В 1600 году английский учёный Уильям Гилберт опубликовал трактат "О магните", в котором впервые ввёл термин "электрический" для обозначения притягательных свойств натёртого янтаря. Он также установил, что Земля сама является огромным магнитом. В 1729 году английский физик Стивен Грей провёл серию экспериментов, показавших, что электрический заряд может передаваться по проводникам на значительные расстояния. Его опыты положили начало развитию науки об электростатике. В 1733 году немецкий учёный Георг Вильгельм Рихман предложил шкалу для измерения величины электрического заряда. В 1745 году немецкий физик Эвальд Юрген фон Клейст и голландский учёный Питер Ван Мушенбрук независимо друг от друга изобрели "лейденскую банку" - первый конденсатор, способный накапливать и хранить электрические заряды. Это устройство позволило проводить более точные исследования электрических явлений. Параллельно с развитием электростатики в XVIII веке происходило становление гальванизма - учения об электрохимических процессах. В 1786 году итальянский врач Луиджи Гальвани обнаружил, что сокращение мышц лягушки можно вызвать при соприкосновении с различными металлами. Эти эксперименты легли в основу представлений об "животном электричестве". Вольта в 1800 году построил первый в мире гальванический элемент - прообраз современной электрической батареи. Открытие электромагнитной индукции Существенный прорыв в понимании взаимосвязи электрических и магнитных явлений произошёл в 1820-х годах. В 1820 году датский физик Ханс Кристиан Эрстед обнаружил, что электрический ток, протекающий по проводнику, вызывает отклонение магнитной стрелки. Это было первое экспериментальное доказательство связи между электричеством и магнетизмом. Открытие Эрстеда вдохновило других учёных на дальнейшие исследования. В 1825 году французский физик Андре-Мари Ампер сформулировал законы взаимодействия проводников с электрическим током, доказав, что электрические токи создают вокруг себя магнитные поля. Ампер также выдвинул гипотезу о том, что магнетизм обусловлен движением электрических зарядов внутри вещества. Ключевым событием стало открытие электромагнитной индукции английским физиком Майклом Фарадеем в 1831 году. Фарадей установил, что изменение магнитного поля вызывает возникновение электрического тока в проводнике, помещённом в это поле. Это явление легло в основу принципа работы генераторов, трансформаторов и многих других электрических устройств. Развитие классической электродинамики Теоретическое обобщение электрических, магнитных и индукционных явлений было сделано британским физиком Джеймсом Клерком Максвеллом в 1860-х годах. Он тщательно изучил работы предшественников - Фарадея, Ампера, Кулона и других пионеров электромагнетизма и сформулировал фундаментальные уравнения электромагнетизма, описывающие взаимосвязь электрических и магнитных полей. В 1865 году Максвелл опубликовал свою знаменитую статью "Динамическая теория электромагнитного поля", в которой предпринял первую попытку единого теоретического описания электрических, магнитных и оптических явлений. Он представил электромагнетизм как единое целое, основанное на концепции электромагнитного поля. В 1873 году Максвелл завершил работу над фундаментальным трудом "Трактат об электричестве и магнетизме". В этой книге он сформулировал систему уравнений, описывающих взаимосвязь электрических и магнитных полей. Эти уравнения, ныне известные как уравнения Максвелла, являются математической основой классической электродинамики. Максвелл также в 1864 году предсказал существование электромагнитных волн, распространяющихся с конечной скоростью. После тщательного анализа своих уравнений им было выведено, что скорость распространения этих волн равна скорости света, что позволило ему сделать вывод о том, что свет является разновидностью электромагнитных волн. Экспериментальное подтверждение существования электромагнитных волн было получено в 1888 году немецким физиком Генрихом Герцем. Он смог генерировать, излучать и принимать электромагнитные волны в лабораторных условиях, открыв тем самым новую главу в истории физики. Открытие Герца стало отправной точкой для создания радиотехники. В 1895 году российский физик Александр Попов продемонстрировал первую в мире систему радиосвязи. Вскоре после этого итальянский инженер Гульельмо Маркони изобрёл первый коммерческий радиотелеграф. Развитие классической электродинамики Максвелла-Герца в конце XIX века завершило формирование электромагнетизма как фундаментальной физической теории, объединившей электрические, магнитные и оптические явления. Открытия в квантовой электродинамике В начале XX века успехи классической электродинамики были дополнены революционными открытиями в области квантовой механики. В 1905 году Альберт Эйнштейн объяснил фотоэлектрический эффект, постулировав существование квантов света - фотонов. Это положило начало становлению квантовой электродинамики. В 1927 году советский физик Пётр Капица обнаружил явление сверхтекучести жидкого гелия, открыв новое квантовое состояние вещества. В 1947 году американские физики Джон Бардин, Уолтер Браттейн и Уильям Шокли изобрели первый полупроводниковый транзистор, заложив основы современной микроэлектроники. Дальнейшее развитие квантовой электродинамики в 1940-1950-х годах связано с работами Ричарда Фейнмана, Джулиана Швингера и Синъитиро Томонаги. Ими была создана последовательная теория взаимодействия электромагнитного поля с заряженными частицами, учитывающая квантовые эффекты. Современные достижения и перспективы Современная квантовая электродинамика является одной из наиболее точных физических теорий. Она позволяет с высокой точностью предсказывать и описывать широкий спектр электромагнитных явлений - от элементарных взаимодействий на субатомном уровне до сложных процессов в космических масштабах. Знания в области электромагнетизма находят применение в самых разных областях - от электроники и радиотехники до астрофизики и космонавтики. Дальнейшее развитие электромагнитной теории открывает новые возможности для создания высокотехнологичных устройств, совершенствования современных технологий и глубокого познания окружающего мира. См. такжеПримечания
Литература
|