Считается предшественником алгоритма AES. Структура алгоритма была подобрана авторами для возможности получения эффективной реализации на широком спектре процессоров, а также для криптостойкости к дифференциальному и линейномукриптоанализу.
Алгоритм SQUARE использует ключ длиной 128 бит, данные шифруются 128-битными блоками, однако модульный подход к построению шифра позволяет легко расширить до больших размеров длину ключа и длину блока данных. Один раунд SQUARE состоит из четырёх отдельных преобразований. Данные представляются байтовым квадратом размера 4x4. Основные составляющие этого шифра — это пять различных обратимых преобразований, которые воздействуют на массив байтов размера .[1]
Преобразования в раунде шифрования
Линейное преобразование
Линейное преобразование воздействует на каждую строку в квадрате данных. Оно представляется формулой , где:
— значение байта, находящегося в -й строке и -м столбце в квадрате данных;
Важно, что поле имеет характеристику 2, то есть операция сложения соответствует побитовому .
Каждая -ая строка в квадрате может быть представлена в виде полинома . Тогда, определяя коэффициенты как полином , преобразование можно представить в виде произведения полиномов: , здесь — новое значение строки квадрата, представленное в виде полинома, и . Обратному преобразованию соответствует полином , определённый по формуле .[2]
Нелинейное преобразование
Данное преобразование является табличной заменой . Таблица, по которой осуществляется замена:
Для шифрования необходимо получить 8 128-битных ключей раундов, а также ключ для предварительного раунда из ключа шифрования алгоритма.
Процедура получения ключа описывается преобразованием , выполняющимся над ключом, представленным, как и блок данных, байтовым квадратом 4x4. Преобразование описывается следующими операциями:
;
;
;
;
где:
— -я строка байтового квадрата ключа -го раунда;
— константа для -го раунда, вычисляемая по формуле , ;
— операция циклического сдвига байтовой строки на один байт влево: ;
Исходный ключ алгоритма шифрования используется как ключ для предварительного раунда.[2]
Шифрование
Обозначим один раунд шифрования как . Также, восьми раундам преобразования предшествует сложение с ключом и :.[2]
Расшифрование
Алгоритм расшифрования аналогичен алгоритму шифрования, но вместо преобразований и используются обратные преобразования и , при этом — это обратная табличная замена, а — это умножение строки на полином такой, что , также в предварительном раунде используется преобразование вместо . Из формулы для шифрования видно, что
,
где . Так как , и, более того, так как , получаем . Теперь один раунд для расшифрования можно определить как , и полная формула для расшифрования записывается как :
Исследование криптостойкости создателями алгоритма
Алгоритм обладает высокой стойкостью против линейного и дифференциального криптоанализа, благодаря преобразованиям и , которые понижают максимальную вероятность появления дифференциальных следов и максимальную корреляцию линейных следов за 4 раунда преобразований. Первый криптоанализ SQUARE был проведён его авторами с использованием интегрального криптоанализа, который позже стал известен как Square-атака.[2]
Описание Square-атаки
Прежде всего, введем несколько определений:
Определение 1:
Пусть -множество — набор из 256 16-байтовых состояний, каждое из которых отличается от других в некоторых байтах, которые назовём активными, и совпадают в некоторых байтах, которые будем называть пассивными. Далее, — это набор индексов активных байтов.[3] Имеем:
.
Определение 2:
Если применение операции исключающего «или» ко всем байтам на одной позиции в -множестве даёт 0, то эта позиция называется уравновешенной по -множеству.[3]
Применение преобразований и к -множеству даёт -множество с тем же . Применение преобразования даёт -множество, в котором активные байты транспонированы (относительно активных байтов в исходном -множестве). Также, применение к -множеству необязательно вернёт -множество, однако, так как каждый выходной байт является линейной комбинацией четырёх входных байт в той же строке, то, подавая строку с всего одним активным байтом, на выходе получим строку состоящую только из активных байт. [2]
Рассмотрим -множество, в котором только один байт является активным и проследим, как изменяется позиция активного байта в течение трех раундов (здесь предварительный раунд объединён с первым: , который в итоге записывается как ). Так как первый раунд не содержит , то к началу второго раунда остается один активный байт. Во втором раунде преобразует в строку активных байтов, которые преобразует в столбец активных байт. в третьем раунде переводит результат в -множество, состоящее только из активных байт. Значения байт на выходе третьего раунда пробегают все возможные значения, следовательно, уравновешены по множеству , имеем
значит байты на выходе в четвёртом раунде уравновешены по -множеству. Эта уравновещенность нарушается последующим применением . Выходные байты четвёртого раунда могут быть выражены с помощью функции от промежуточного состояния : .
Предполагая значение , значение для всех элементов -множества могут быть вычислены из шифротекстов. Если значение этого байта оказалось неуравновешенным по , то предположенное значение ключа является ложным.
Этот метод криптоанализа позволил взломать 6-раундовый вариант шифра с использованием блоков открытого текста и соответствующих им блоков шифротекста и выполнением операций шифрования.[2]
В 2010 году была представлена атака на связанных ключах методом бумеранга. Ранее подобная атака применялась к шифрам KASUMI, COCONUT98, IDEA и AES-192/256. Это была первая атака на полнораундовый SQUARE.[4] В 2011 году был проведён криптоанализ полнораундового варианта SQUARE с помощью полного двудольного графа. Данный тип атаки позволил взломать шифр с использованием одного ключа, открытых текстов и проведения операций шифрования.[5]
Особенности шифра
Шифр SQUARE создавался, соответствуя стратегии широкого следа — каждый раунд шифра состоит из нескольких преобразований, нелинейной перестановки и композиции линейных преобразований — что дало шифру высокую криптостойкость против линейного и дифференциального криптоанализа. Составляющие блоки алгоритма и их взаимодействие подбирались также исходя из возможности быстрой реализации на широком спектре процессоров.[6] Реализация алгорима на языке Си имела скорость шифрования 2.63 Мбайт/с, запускаемая на процессоре Pentium с частотой 100 МГц, а реализация на языке Ассемблер увеличивала скорость шифрования вдвое. Данный алгоритм получил развитие и стал основой нового американского стандарта — шифра Rijndael, который был разработан группой авторов SQUARE. Кстати, на конкурсе AES, эксперты отметили, что «в основе алгоритма Rijndael лежит нетрадиционная парадигма, поэтому он может содержать скрытые уязвимости»[1]. Именно по этой причине сам SQUARE сейчас используется редко, уступая в популярности своему потомку — Rijndael. Также потомком шифра является южнокорейский алгоритм CRYPTON, участник конкурса AES.