Share to: share facebook share twitter share wa share telegram print page

 

Теорема Менелая

Теоре́ма Менела́я, или теорема о трансверсалях, или теорема о полном четырёхстороннике, — классическая теорема аффинной геометрии.

Формулировка

Если точки и лежат соответственно на сторонах и треугольника или на их продолжениях[1], то они коллинеарны тогда и только тогда, когда

где , и обозначают отношения направленных отрезков.

Замечания

  • В частности, из теоремы следует соотношение для длин отрезков:

Вариации и обобщения

  • Тригонометрический эквивалент:
, где все углы — ориентированные.

История

Эта теорема доказывается в третьей книге «Сферики» Менелая Александрийского (около 100 года нашей эры). Менелай сначала доказывает теорему для плоского случая, а потом центральным проектированием переносит её на сферу. Возможно, что плоский случай теоремы рассматривался ранее в несохранившихся «Поризмах» Евклида.

Сферическая теорема Менелая была основным средством, с помощью которого решались разнообразные прикладные задачи позднеантичной и средневековой астрономии и геодезии. Ей посвящён ряд сочинений под названием «Книга о фигуре секущих», составленных такими математиками средневекового Востока, как Сабит ибн Корра, ан-Насави, ал-Магриби, ас-Сиджизи, ас-Салар, Джабир ибн Афлах, Насир ад-Дин ат-Туси.

Итальянский математик Джованни Чева в 1678 году предложил доказательство теоремы Менелая и родственной ей теоремы Чевы для плоского случая, основанное на рассмотрении центра тяжести системы из трёх точечных грузов.[2]

Применения

См. также

Примечания

  1. На самих сторонах может лежать ровно две или ни одной точки.
  2. G. Ceva, De lineis rectis se invicem secantibus, statica constructio Milan, 1678

Ссылки

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya