Маса τ-лептона 1777 МеВ. Час життя 2.9 ·10−13 с. Тау-лептон є найважчим та найбільш короткоживучим лептоном.
Розпади
τ-лептон є єдиним лептоном, який може розпадатися на адрони, в той час як інші занадто легкі для цього. Як і інші канали розпаду, адронний розпад проходить завдяки слабкій взаємодії.[2]
Тау-лептон, завдяки своїй великій масі може розпадатися дуже різноманітно[3]:
Існують і інші канали розпаду, сумарна доля яких складає менше 0,1 відсотка. У них можуть породжуватись більш важкі частинки, такі як f1(1285) і фі-мезон.
В підсумку, тау-лептон розпадається на адрони приблизно в 64.79 % випадків. Оскільки при реакції слабкої взаємодії повинно зберігатися тау-лептонне число, серед продуктів адронного розпаду завжди присутнє тау-нейтрино.[2]
Мюонний канал розпаду має трішки меншу ймовірність через те, що маса мюона приблизно в 200 раз більша ніж електрона. Якщо б цієї в різниці в масах не було, ймовірності були б рівними, адже лептони цілком рівнозначні у взаємодії з калібрувальними бозонами, через які йде розпад.
Історія відкриття
Після відкриття мюона в 1936 році, фізики багато досліджували його природу. Існували припущення, що мюон є, в деякому сенсі, проміжною частинкою між електроном і протоном, а тому взаємодія його з нуклонами має відбуватись інакше. Проте до кінця 60-х стало зрозуміло, що, окрім маси, електрон і мюон практично однакові, тому почала набувати популярності інша гіпотеза, згідно з якою мюон та електрон належать до одної сім'ї частинок, і можуть існувати і інші, ще більш важкі заряджені лептони, кожному з яких відповідає власний тип нейтрино. Ці лептони отримали робочі назви μ', μ" і т. ін.[5]
З 1973, коли у Стенфорді був побудований електронно-позитронний колайдер SPEAR, Мартін Перл намагався знайти на ньому важкі лептони, і у 1975 році це йому вдалося. Частинка отримала назву τ від грецького τριτον — третій.[5] Також, у деяких роботах її називали U, від unknown.
Масу тау точніше виміряв Бранделік у 1978 році в експериментах на німецькому прискорювачі DORIS.[5]
Час життя лептона був виміряний у 1982 році кількома незалежними групами.[5]
Припущення про існування ще більш важких лептонів (четвертого покоління) наразі лишається відкритим.[6]
Екзотичні атоми
Подібно до мюона, що може утворювати мюоній (атом, в якому мюон замінює електрон) та димюоній (мюон та антимюон, що обертаються один навколо одного), тау міг би формувати зв'язаний стан з протоном, анти-тау, анти-мюоном або позитроном. Завдяки великій масі, орбіта тау-частинки у такій системі пролягала б надзвичайно близько до другого компонента (і навіть всередині нього для важких ядер), що дозволило б дослідити надзвичайно тонкі ефекти квантової теорії.[7][8] Проте наразі такі системи не було зафіксовано, як через важкість отримання тау-частинок, так і через дуже малий час їх життя.
Цікаві факти
Завдяки існуванню аномалії в квантовій теорії поля відкриття третього покоління лептонів – тау-лептонів – означало, що обов'язково існує і третє покоління кварків (хоча їхнє передбачення було зроблено ще до відкриття тау і незалежно від нього, в 1973 році). І справді, існування третього покоління кварків було експериментально підтверджене в 1977 (b-кварк) та 1995 (t-кварк).
Після відкриття тау-лептона вважалося очевидним існування тау-нейтрино в продуктах його розпаду, однак це було складно перевірити. Нейтрино дуже слабко взаємодіють з речовиною. Щоб визначити існування саме тау-нейтрино, необхідно спостерігати процес утворення тау-лептона у таких рідкісних взаємодіях, що є складною експериментальною задачею через короткоживучість тау-лептона. Лише 2000 року було експериментально доведено існування тау-нейтрино, що є останнім (із наразі відомих) ферміоном Стандартної моделі.
На адронних колайдерах основним джерелом тау-лептонів є розпади зачарованих та красивих адронів, а також W і Z бозонів[9][10].
Ведеться пошук розпадів тау-лептона, в яких не уторюється нейтрино[11]. Такі процеси заборонені у Стандартній моделі, оскільки вони порушують закон збереження тау-лептонного числа, але можуть бути дозволеними в гіпотетичних розширеннях Стандартної моделі. Жодних порушень Стандартної моделі виявлено не було.
↑ абRiazuddin (2009). Non-standard interactions(PDF). NCP 5th Particle Physics Sypnoisis. Islamabad,: Riazuddin, Head of High-Energy Theory Group at National Center for Physics. 1 (1): 1—25. Архів оригіналу(PDF) за 3 березня 2016.{{cite journal}}: Обслуговування CS1: Сторінки з посиланнями на джерела із зайвою пунктуацією (посилання) [Архівовано 2016-03-03 у Wayback Machine.]