Share to: share facebook share twitter share wa share telegram print page

 

Флуктуативно-дисипативна теорема

Флуктуативно-дисипативна теорема — співвідношення між величиною флуктуацій в термодинамічній системі й узагальненим відгуком системи на зовнішнє збурення.

Флуктуативно-дисипативна теорема встановлює зв'язок[1] між середньо-квадратичним відхиленням фізичної величини , та дисипативними властивостями середовища:

,

де - уявна частина узагальненої сприйнятливості, - зведена стала Планка, - частота, - стала Больцмана, T - температура.

Фізична природа

Флуктуаційно-дисипативна теорема є математичним узагальненням того факту, що при флуктуаціях відбуваються ті ж процеси, що й при зовнішньому збуренні системи. Флуктуації та наслідки зовнішнього збурення затухають (дисипують) схожим чином. Наприклад, при проходженні електричного струму в напівпровіднику виділяється тепло - це дисипативний процес. В напівпровіднику можуть також виникнути флуктуації концентрації носіїв заряду. Для виникнення таких флуктуацій необхідна енергія, яка надходить від теплових коливань кристалічної ґратки. При розсмоктуванні флуктуацій відбуваються ті ж процеси дисипації енергії, що й при проходженні струму. Як наслідок, енергія повертається кристалічній ґратці.

Класичний випадок

При високій температурі, коли для спектральної компоненти середньо-квадратичного відхилення справедлива простіша формула:

,

яка виконується не лише у квантовому випадку, а й при класичному розгляді.

Якщо справедливо для всього спектру флуктуацій, то:

,

тобто величина флуктуацій зв'язана із статичним значенням функції відгуку.

Приклади

Прикладом флуктуативно-дисипативної теореми є співвідношення Ейнштейна:

,

яке зв'язує коефіцієнт дифузії D та рухливість .

Флуктуативно-дисипативну теорему сформулювали Каллен(інші мови) та Велтон(інші мови) у 1951 році.

Формула Найквіста

В 1928 р. Джон Б. Джонсон виявив, а Гаррі Найквіст пояснив явище теплового шуму. При відсутності струму, що протікає через електричний опір, середня квадратична напруга залежить від опору , та ширини частотного діапазону вимірювань  :

.

Висновок

В електричних провідниках найбільш стійкими флуктуаціями виявляються такі, що призводять до виникнення стоячих хвиль. Число стоячих електромагнітних хвиль з частотою від до в провіднику довжиною з врахуванням поляризації рівне . Будемо вважати, що на кожну стоячу хвилю приходиться енергія , що відповідає енергії гармонічного осцилятора. Тоді енергія стоячих хвиль з частотою від до буде . Потужність на одиницю довжини кола дорівнює . Вся енергія флуктуаційних струмів знову переходить в тепло на опорі. Втрата потужності на одиниці довжини провідника з опором по закону Джоуля-Ленца дорівнює , де - середній квадрат флуктуаційної ЕРС для хвиль з частотою . Отримуємо формулу Найквіста[2]:

.

Примітки

  1. Ландау Л.Д., Лифшиц Е.М.:Статистическая физика. Часть 1. — Издание 5-е. — М.: Физматлит, 2001. — 616 с. — («Теоретическая физика», том V). — ISBN 5-9221-0054-8
  2. Ноздрев В. Ф., Сенкевич А. А. Курс статистической физики. - М., Высшая школа, 1969. - c. 189


Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya