Share to: share facebook share twitter share wa share telegram print page

 

Ізоморфізм груп

Ізоморфі́зм групбієктивний гомоморфізм груп.

Визначення

Ізоморфізм груп — взаємно однозначне відображення групи в групу , що зберігає групову операцію, тобто:

.

Ізоморфні групи у певному сенсі є еквівалентними.

Приклади

через ізоморфізм (див. експонента).

Автоморфізм групи

Автоморфізм групи — ізоморфізм групи в себе. Тобто бієкція

.

Автоморфізм групи називається внутрішнім, якщо його можна задати як

.

Не внутрішній автоморфізм називають зовнішнім автоморфізмом.

  • Автоморфізм завжди переводить одиницю групи в себе ж.
  • Композиція двох автоморфізмів є автоморфізмом. Множина всіх автоморфізмів , відносно композиції утворює групу — групу автоморфізмів , позначається — .
  • Множина всіх внутрішніх автоморфізмів є нормальною підгрупою в , і позначається — .
  • Фактор-група називається групою зовнішніх автоморфізмів, і позначається — .

Див. також

Джерела

  • (укр.) Гаврилків В. М. Елементи теорії груп та теорії кілець. — І.-Ф.  : Голіней, 2023. — 153 с.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya