Хоча близькі задачі комбінаторної геометрії вивчали й раніше (Скотт у 1970 і Джемісон у 1984), задачу визначення числа нахилів графа поставили Вейд і Чу[1], показавши, що число нахилів графа з вершинами повного графа дорівнює рівно . Малюнок графа з таким числом нахилів можна отримати, розташувавши вершини графа в кутах правильного многокутника.
Зв'язок зі степенем графа
Зрозуміло, що число нахилів графа з найбільшим степенем не менше , оскільки максимум два інцидентні ребра вершини степеня d можуть лежати на одній прямій (мати один нахил). Точніше, число нахилів не менше лінійної деревності графа, оскільки ребра одного нахилу мають утворювати лінійний ліс, а лінійна деревність, у свою чергу, не менша ніж .
Існують графи з найбільшим степенем 5, що мають довільно велике число нахилів[2]. Однак будь-який граф із найбільшим степенем 3 має не більше чотирьох нахилів[3]. Результат Вейда і Чу (Wade, Chu, (1994)) для повного графа показує, що ця межа точна. Не будь-який набір із чотирьох нахилів підходить для малювання всіх графів степеня 3 — набір нахилів підходить для малювання тоді й лише тоді, коли вони є нахилами сторін та діагоналей паралелограма. Зокрема, будь-який граф степеня 3 можна намалювати так, що його ребра або паралельні осям, або паралельні основним діагоналям цілочисельної ґратки[4]. Невідомо, чи обмежене число нахилів графів з найбільшим степенем 4[5].
Планарні графи
Як показали Кезег, Пах і Палвелді (Keszegh, Pach, Pálvölgyi, (2011)), будь-який планарний граф має плоский малюнок у вигляді прямих відрізків, у якому число різних нахилів є функцією від степеня графа. Їхнє доведення ґрунтується на побудові Малиця і Папакостаса (Malitz, Papakostas, (1994)) для обмеження кутової роздільності планарних графів як функції степеня. Степінь обмежують доповненням графа до максимального планарного графа без збільшення його степеня більш ніж на сталий множник, а потім застосовують теорема про упаковку кіл для подання цього розширеного графа як набору кіл, що дотикаються між собою. Якщо степінь початкового графа обмежено, відношення радіусів суміжних кіл у пакуванні буде також обмеженим[7], звідки, у свою чергу, випливає, що застосування дерева квадрантів для всіх вершин графа в точці всередині кола дає нахили, які є відношеннями малих цілих чисел. Число різних нахилів, що отримується при цій побудові, є експонентою від степеня графа.
Складність
Визначення, чи дорівнює число нахилів 2, є NP-повною задачею[8][9][10]. Звідси випливає, що NP-складною задачею є визначення числа нахилів довільного графа або апроксимація цього числа з гарантованою ефективністю, кращою за 3/2.
Перевірка, чи можна зобратити планарний граф планарним малюнком із числом нахилів 2, також є NP-повною задачею[11].
M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Symvonis, E. Welzl, G. J. Woeginger. Drawing graphs in the plane with high resolution // SIAM Journal on Computing. — 1993. — Т. 22, вип. 5. — С. 1035–1052. — DOI:10.1137/0222063.
Lowell J. Hansen. On the Rodin and Sullivan ring lemma // Complex Variables, Theory and Application. — 1988. — Т. 10, вип. 1. — С. 23–30. — DOI:10.1080/17476938808814284.
János Pach, Micha Sharir. Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures. — American Mathematical Society, 2009. — Т. 152. — С. 126–127. — (Mathematical Surveys and Monographs)