Trường phái Pythagoras đã nghiên cứu đến các đa diện đều, nhưng các hình chóp, lăng trụ, hình nón và hình trụ tròn chưa được nghiên cứu cho đến tận khi trường phái Platon thực hiện. Eudoxus đã thiết lập các tính toán, chứng minh hình chóp và hình nón có thể tích bằng một phần ba của lăng trụ và hình trụ tròn với cùng đáy và cùng chiều cao. Ông có lẽ cũng là người đầu tiên khám phá ra chứng minh được thể tích của khối cầu tỉ lệ với lập phương của bán kính của nó.[2]
Các chủ đề
Các chủ đề chính trong hình học không gian và hình học khối tích bao gồm
Nhiều kỹ thuật và công cụ được sử dụng trong hình học không gian. Trong số đó, hình học giải tích và kỹ thuật giải tích vectơ đóng vai trò quan trọng khi cho phép áp dụng các tính chất của hệ phương trình tuyến tính và đại số ma trận để có giải quyết ở những chiều không gian lớn hơn.