Ribose-phosphate diphosphokinase chuyển nhóm diphosphoryl từ Mg-ATP (Mg2+ kết hợp ATP) thành ribose 5-phosphate.[2] Phản ứng enzyme bắt đầu khi enzyme liên kết với ribose 5-phosphate, sau đó liên kết Mg-ATP với enzyme. Ở trạng thái chuyển tiếp, diphosphate được chuyển hóa. Enzyme đầu tiên giải phóng AMP trước khi tạo ra sản phẩm phosphoribosyl pyrophosphate.[4] Các thí nghiệm sử dụng nước chứa đồng vị oxy-18 chứng minh rằng cơ chế phản ứng tiến hành theo cơ chế thế nucleophil lưỡng phân tử (SN2), tác nhân là nhóm hydroxyl liên kết nguyên tử carbon hemiacetal phi đối xứng (carbon anomer) của ribose 5-phosphate trên phân tử beta-phospho ATP.[5]
Cấu trúc
Các nghiên cứu kết tinh và nhiễu xạ tia X đã làm sáng tỏ cấu trúc của enzyme, được phân lập bằng cách nhân bản, biểu hiện protein và kỹ thuật tinh chế. Một tiểu đơn vị của ribose-phosphate diphosphokinase bao gồm 318 amino acid; phức hợp enzyme hoạt động bao gồm ba homodimers (hoặc sáu tiểu đơn vị, một hexamer). Cấu trúc của một tiểu đơn vị là một tấm beta song song (lõi trung tâm) được bao quanh bởi bốn vòng xoắn alpha ở đầu N và năm vòng xoắn alpha ở đầu C, với hai tấm beta ngắn song song kéo dài từ lõi trung tâm.[2] Vị trí gắn kết ribose 5-phosphate tại Asp220– Thr228, nằm trong đầu C của một tiểu đơn vị.[2][6]
Chức năng
Sản phẩm phản ứng phosphoribosyl pyrophosphate (PRPP) được sử dụng trong nhiều con đường sinh tổng hợp (tổng hợp de novo và trục vớt nucleotide). PRPP cung cấp đường ribose trong quá trình tổng hợp purine và pyrimidine, kết hợp các base nucleotide tạo thành RNA và DNA. PRPP phản ứng với orotate để tạo thành orotidylate, chuyển đổi thành uridylate (UMP). UMP sau đó chuyển thành nucleotide cytidine triphosphate (CTP). Phản ứng của PRPP, glutamine và ammonia tạo thành 5-Phosphoribosyl-1-amin, tiền chất của inosine (IMP), cuối cùng chuyển thành adenosine triphosphate (ATP) hoặc guanosine triphosphate (GTP). PRPP đóng vai trò quan trọng trong con đường trục vớt purine bằng cách phản ứng với purine tự do, tạo thành adenylate, guanylate và inosinate.[7][8] PRPP cũng được sử dụng trong quá trình tổng hợp NAD: phản ứng của PRPP với axit nicotinic tạo ra mononucleotide axit nicotinic trung gian.[9]
Bệnh tật
Bởi vì sản phẩm của nó là một hợp chất quan trọng trong nhiều con đường sinh tổng hợp, ribose-phosphate diphosphokinase có liên quan đến một số rối loạn hiếm gặp và các bệnh thoái hóa liên quan đến nhiễm sắc thể X. Đột biến tăng cường hoạt động enzyme sẽ dẫn đến việc sản xuất quá mức purine và axit uric. Các triệu chứng bao gồm bệnh gút, mất khả năng thính giác,[10] lực cơ yếu (hạ huyết áp), phối hợp cơ bị suy yếu (mất điều hòa), bệnh lý thần kinh ngoại biên di truyền,[11] và rối loạn phát triển hệ thần kinh.[12][13][14] Đột biến mất chức năng ribose-phosphate diphosphokinase dẫn đến bệnh Charcot-Marie-Tooth và hội chứng ARTS.[15]
^Fox IH, Kelley WN (tháng 4 năm 1972). “Human phosphoribosylpyrophosphate synthetase. Kinetic mechanism and end product inhibition”. J. Biol. Chem. 247 (7): 2126–31. PMID4335863.
^Miller GA, Rosenzweig S, Switzer RL (tháng 12 năm 1975). “Oxygen-18 studies of the mechanism of pyrophosphoryl group transfer catalyzed by phosphoribosylpyrophosphate synthetase”. Arch. Biochem. Biophys. 171 (2): 732–6. doi:10.1016/0003-9861(75)90086-7. PMID173242.
^Eriksen TA, Kadziola A, Bentsen AK, Harlow KW, Larsen S (tháng 4 năm 2000). “Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase”. Nat. Struct. Biol. 7 (4): 303–8. doi:10.1038/74069. PMID10742175.
^Jeremy M. Berg; John L. Tymoczko; Lubert Stryer; Gregory J. Gatto Jr. (2012). Biochemistry (ấn bản thứ 7). New York: W.H. Freeman. ISBN1429229365.
^Rongvaux A, Andris F, Van Gool F, Leo O (tháng 7 năm 2003). “Reconstructing eukaryotic NAD metabolism”. BioEssays. 25 (7): 683–90. doi:10.1002/bies.10297. PMID12815723.