Tam giác vuôngTam giác vuông là một tam giác có một góc là góc vuông (góc 90 độ). Mối quan hệ giữa các cạnh và góc của một tam giác vuông là nền tảng cơ bản của lượng giác học. Thuật ngữCạnh đối diện với góc vuông gọi là cạnh huyền. Hai cạnh kề với góc vuông là cạnh bên (hay còn gọi là cạnh góc vuông). Cạnh a có thể xem là kề với góc B và đối góc A, trong khi cạnh b kề góc A và đối góc B. Nếu chiều dài của ba cạnh là các số nguyên, tam giác được gọi là tam giác Pythagoras và chiều dài ba cạnh của nó được gọi chung là Bộ ba số Pythagoras. Các định lýGócTrong tam giác vuông, 2 góc nhọn phụ nhau (có tổng số đo bằng 90 độ). Đường caoNếu một đường cao được vẽ từ đỉnh góc vuông cho tới cạnh huyền thì tam giác vuông được chia thành hai tam giác nhỏ hơn đồng dạng với tam giác gốc và đồng dạng với nhau. Từ đó:
Công thức được viết là:
Trong đó, a, b, c, d, e, f được thể hiện như trong biểu đồ. Do đó: Hơn nữa, chiều cao với cạnh huyền còn có liên quan tới các cạnh bên của tam giác vuông, cụ thể:[1][2] Diện tíchVới bất cứ tam giác nào, diện tích đều bằng một nửa chiều dài đáy nhân với chiều cao tương ứng. Trong một tam giác vuông, nếu một cạnh góc vuông được coi là đáy thì cạnh góc vuông còn lại được xem là chiều cao, diện tích của tam giác vuông khi đó sẽ bằng một nửa tích của hai cạnh góc vuông. Công thức diện tích của tam giác là: Trong đó a và b là 2 cạnh góc vuông của tam giác, c là cạnh huyền và h là đường cao của tam giác Nếu đường tròn nội tiếp tiếp tuyến cạnh huyền AB tại điểm P, coi nửa chu vi là s = (a+b+c)/2, chúng ta có PA = s − a và PB = s − b và diện tích sẽ là: Công thức này chỉ áp dụng với các tam giác vuông.[3] Đường trung tuyến trong tam giác vuôngTrong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. Định lý PythagoĐịnh lý Pythago phát biểu rằng:
Nó được thể hiện bằng phương trình trong đó, c là chiều dài của cạnh huyền và a và b là chiều dài của hai cạnh còn lại. Bán kính đường tròn nội tiếp và bán kính đường tròn ngoại tiếpBán kính của đường tròn nội tiếp của một tam giác vuông với hai cạnh bên a và b và cạnh huyền c là: Bán kính của đường tròn ngoại tiếp bằng chiều dài một nửa cạnh huyền Tỷ số lượng giác của góc nhọn
Trong tam giác vuông có góc nhọn thì = cạnh đối/cạnh huyền = cạnh kề/cạnh huyền = cạnh đối/cạnh kề = cạnh kề/cạnh đối . Có một bài thơ giúp ta nhớ được: "Sin đi học / Cos không hư / Tan đoàn kết / Cot kết đoàn''. Dấu hiệu nhận biết tam giác vuông
Chú thích
Tham khảoWikimedia Commons có thêm hình ảnh và phương tiện truyền tải về Tam giác vuông.
Information related to Tam giác vuông |