依概率收敛在概率论中,依概率收敛是随机变量收敛的方式之一。一个随机变量序列 依概率收敛到某一个随机变量,指的是 和 之间存在一定差距的可能性将会随着n 的增大而趋向于零。 依概率收敛是测度论中的依测度收敛概念在概率论中的特例[1]。 定义设 是一个随机变量序列,是一个随机变量。如果对于任意的正实数,都有: 那么称序列 依概率收敛到。 性质依概率收敛是一种常见的收敛性质。依概率收敛比依分布收敛更强,比平均收敛则要弱。 如果一个随机变量序列依概率收敛到某一个随机变量,则它们也一定依分布收敛到这个随机变量。反过来则不然:只有当一个随机变量序列依分布收敛到一个常数的时候,才能够推出它们也依概率收敛到这个常数。 参见参考来源
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve