卡倫數卡倫數是形式如(寫作)的自然數。 若質數,能被整除。根據費馬小定理,若p是奇質數,能整除對於 (對於)。 廣義卡倫數有時定義為而且。胡道爾數有時稱為第二種卡倫數。 歷史和卡倫質數1905年,詹姆士·卡倫首先研究它。 1958年Raphael M. Robinson核實是質數,且證明了若,除了和之外,均為合成數。 1984年Wilfrid Cellar又類似地核實了 和以上提到的卡倫質數之外,的均為合成數。 截止2009年4月,已知的卡倫質數有141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828 (OEIS:A005849),n=1354000以下的卡倫質數已被找到。可是,「存在無限個卡倫質數」這問題仍屬猜想。 是否存在質數使得為質數同樣為疑問。 參考
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve