卡邁克爾數在數論上,卡邁克爾數(英語:Carmichael numbers)是正合成數,且使得對於所有跟互質的整數,。 概觀費馬小定理說明所有質數都有這個性質。在這方面,卡邁克爾數和質數十分相似,所以它們稱為偽質數。 因為這些數的存在,使得费马素性检验變得不可靠。不過,它仍可用於證明一個數是合數。另一方面,隨着數越來越大,卡邁克爾數變得越來越少,1至有585 355個卡邁克爾數。 卡邁克爾數的一個等價的定義在Korselt定理(1899年)出現:一個正合成數是卡邁克爾數,若且唯若無平方數因數且對於所有的質因數,。 這個定理即時說明了所有卡邁克爾數是奇數。 Korselt雖然發現了這些性質,但不能找到例子。1910年羅伯特·丹尼·卡邁克爾找到了第一個兼最小的有這樣性質的數——561。,無平方数因数,且2|560 ; 10|560 ; 16|560 。 之後的卡邁克爾數:(OEIS:A002997) 1105 = 5×13×17 (4 | 1104, 12 | 1104, 16 | 1104) 1729 = 7×13×19 (6 | 1728, 12 | 1728, 18 | 1728) 2465 = 5×17×29 (4 | 2464, 16 | 2464, 28 | 2464) 2821 = 7×13×31 (6 | 2820, 12 | 2820, 30 | 2820) 6601 = 7×23×41 (6 | 6600, 22 | 6600, 40 | 6600) 8911 = 7×19×67 (6 | 8910, 18 | 8910, 66 | 8910) J. Chernick 在1939年證明的一個定理,可以構造卡邁克爾數的一個子集。 對於正整數或,若其三個因數都是質數,它是卡邁克爾數。 保羅·艾狄胥猜想有無限個卡邁克爾數,1994年 William Alford 、 Andrew Granville 及 Carl Pomerance 證明了這個命題。 此外,對於足夠大的,1至之間有至少個卡邁克爾數。 1992年Löh和Niebuhr找到一些很大的卡邁克爾數,其中一個有1 101 518 個因數且有多於個位數。 性質卡邁克爾數有至少3個正質因數。以下是首個k個正質因數的卡邁克爾數,k=3,4,5,...:(OEIS:A006931)
以下是首十個有4個質因數的卡邁克爾數:(OEIS:A074379)
更高階的卡邁克爾數參考不完全翻譯自英文版。
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve