^Hopkins AL, Groom CR; Groom. The druggable genome. Nature reviews. Drug discovery. 2002, 1 (9): 727–30. PMID 12209152. doi:10.1038/nrd892.
^ 4.04.14.2T. Kenakin (2006) A Pharmacology Primer: Theory, Applications, and Methods. 2nd Edition Elsevier ISBN 0-12-370599-1
^May LT, Avlani VA, Sexton PM, Christopoulos A; Avlani; Sexton; Christopoulos. Allosteric modulation of G protein-coupled receptors. Curr. Pharm. Des. 2004, 10 (17): 2003–13. PMID 15279541. doi:10.2174/1381612043384303.
^ 6.06.1Christopoulos A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nature reviews. Drug discovery. 2002, 1 (3): 198–210. PMID 12120504. doi:10.1038/nrd746.
^Bleicher KH, Green LG, Martin RE, Rogers-Evans M; Green; Martin; Rogers-Evans. Ligand identification for G-protein-coupled receptors: a lead generation perspective. Curr Opin Chem Biol. 2004, 8 (3): 287–96. PMID 15183327. doi:10.1016/j.cbpa.2004.04.008.
^Rees S, Morrow D, Kenakin T; Morrow; Kenakin. GPCR drug discovery through the exploitation of allosteric drug binding sites. Recept. Channels. 2002, 8 (5–6): 261–8. PMID 12690954. doi:10.1080/10606820214640.
^Ariëns EJ. Affinity and intrinsic activity in the theory of competitive inhibition. I. Problems and theory. Archives internationales de pharmacodynamie et de thérapie. 1954, 99 (1): 32–49. PMID 13229418.
^Vauquelin G, Van Liefde I; Van Liefde. G protein-coupled receptors: a count of 1001 conformations. Fundamental & clinical pharmacology. 2005, 19 (1): 45–56. PMID 15660959. doi:10.1111/j.1472-8206.2005.00319.x.
^ 16.016.116.2Swinney DC. Biochemical mechanisms of drug action: what does it take for success?. Nature reviews. Drug discovery. 2004, 3 (9): 801–8. PMID 15340390. doi:10.1038/nrd1500.
^Cheng Y, Prusoff WH; Prusoff. Relationship between the inhibition constant (K1) and the concentration of inhibitor, which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22 (23): 3099–108. PMID 4202581. doi:10.1016/0006-2952(73)90196-2.
^ 21.021.121.2Vauquelin G, Van Liefde I, Birzbier BB, Vanderheyden PM; Van Liefde; Birzbier; Vanderheyden. New insights in insurmountable antagonism. Fundamental & clinical pharmacology. 2002, 16 (4): 263–72. PMID 12570014. doi:10.1046/j.1472-8206.2002.00095.x.
^D.E. Golan, A.H Tashjian Jr, E.J. Armstrong, A.W. Armstrong. (2007) Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy Lippincott Williams & Wilkins ISBN 0-7817-8355-0
^Principles and Practice of Pharmacology for Anaesthetists By Norton Elwy Williams, Thomas Norman Calvey Published 2001 Blackwell Publishing ISBN 0-632-05605-3
^Vadivelu N, Hines RL; Hines. Buprenorphine: a unique opioid with broad clinical applications. J Opioid Manag. 2007, 3 (1): 49–58. PMID 17367094.
^Greasley PJ, Clapham JC; Clapham. Inverse agonism or neutral antagonism at G-protein coupled receptors: a medicinal chemistry challenge worth pursuing?. Eur. J. Pharmacol. 2006, 553 (1–3): 1–9. PMID 17081515. doi:10.1016/j.ejphar.2006.09.032.
^Kenakin T. Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol. Pharmacol. 2004, 65 (1): 2–11. PMID 14722230. doi:10.1124/mol.65.1.2.
^Leurs R, Church MK, Taglialatela M; Church; Taglialatela. H1-antihistamines: inverse agonism, anti-inflammatory actions and cardiac effects. Clin Exp Allergy. 2002, 32 (4): 489–98. PMID 11972592. doi:10.1046/j.0954-7894.2002.01314.x.
^Frang H, Cockcroft V, Karskela T, Scheinin M, Marjamäki A; Cockcroft; Karskela; Scheinin; Marjamäki. Phenoxybenzamine binding reveals the helical orientation of the third transmembrane domain of adrenergic receptors. J. Biol. Chem. 2001, 276 (33): 31279–84. PMID 11395517. doi:10.1074/jbc.M104167200.