單位矩陣在線性代數中,階單位矩陣,是一個的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以表示;如果階數可忽略,或可由前後文確定的話,也可簡記為[註 1](或者)。 一些數學書籍使用和(分別意為單位矩陣(unit matrix)和基本矩陣(Einheitsmatrix)),不過更加普遍。 特別是單位矩陣作為所有階矩陣的環的單位,以及作為由所有階可逆矩陣構成的一般線性群的單位元(單位矩陣明顯可逆,單位矩陣乘自己,仍是單位矩陣)。 這些階矩陣經常表示來自維向量空間自己的線性變換,表示恆等函數,而不理會基。 有時使用這個記法簡潔的描述對角線矩陣,寫作: 也可以克羅內克爾δ記法寫作: 性质根據矩陣乘法的定義,單位矩陣的重要性質為:
单位矩阵的特征值皆为1,任何向量都是单位矩阵的特征向量。[1]具有重數 。因为特征值之积等于行列式,所以单位矩阵的行列式为1。因为特征值之等于迹数,单位矩阵的迹为。 注释参考资料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve