截尾函數在数学和计算机科学中,截尾(Truncation)是一個對小數點後數字數量的限制。 截尾和取整函數下取整函數能為正整數截尾。對於任何数 和 (小數點后的位数),截尾函數被定義為: 然而,负数的截尾與下取整函數的捨入方向卻恰恰相反。截尾函數將數值向0捨入(即數字會更大),下取整函數卻向負無窮方向捨入(即數字會更小)。 对于任何數,截尾函數則被定義為: 截尾的原因在計算機之中,當小數被轉換为一个整數時,由於整数類型无法储存的非整数的实数,小數便會被截尾。 代数中應用截尾也可以經修改而适用于多项式。在这种情况下,多项式 P 的截尾可以被定義為n 次方或以下的項數之和。例如在泰勒級數之中,無限項之多項式便會被截尾。[1] 另見参考文献
連結
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve