拉回拉回(pullback)是数学中一个基本概念,涉及到两个不同但关联的程序:预复合与纤维积。与之对偶的概念是前推。 预复合和一个函数的预复合也许提供了拉回最基本的概念:简单地说,设 f 是一个变量 y 的函数,这里 y 自身又是另一个变量 x 的函数,那么 f 可以写成 x 的函数,这即 f 被函数 y(x) 拉回。
这样一个基本程序,经常不经意地出现,比如在初等微积分中:有时也称为“忽略拉回”,从流体力学到微分几何中随处可见。 但是,不仅只有函数可以在这种意义下“拉回”。拉回可以应用到许多其他对象中去,比如微分形式和它们的上同调类 参见: 纤维积拉回作为纤维积的概念最终导致了非常广泛的范畴的拉回,但有一些重要的特例:代数几何中的逆像(和拉回)层,以及代数拓扑和微分几何中的拉回丛。 参见: 关系两种拉回的概念的关系可能最好是用纤维丛的截面来解释:如果 s 是 N 上纤维丛 E 的一个截面,f 是一个从 M 到 N 的映射,那么 s 的由 f 拉回(预复合) 是 M 上的拉回丛(纤维积) f*E 的一个截面。
Information related to 拉回 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve