拟阵拟阵是组合数学中的一个结构,是对向量空间中线性独立这一概念的概括与归纳。拟阵有许多等价的定义,其中最主要的几个定义分别是基于独立集、基底、环路、闭集、平坦、闭包算子和秩函数。 拟阵理论从线性代数和图论中借用了大量术语,主要是因为它是对这些领域中很多重要的核心概念的概括。拟阵理论在几何、拓扑学、组合优化、网络理论和编码理论中都有应用。 定义拟阵有很多等价的定义方式[1]。 独立集就独立集来说, 一个有限的拟阵 是一个二元组 , 其中 是一个 有限集 (称之为 基础集) , 是一个由的子集构成的 集族 (称之为 独立集) 它需要满足下面的条件:[2]
头两个特性定义了一个公认的组合结构,叫做独立系统。 基对于有限拟阵 ,若其基础集的子集是一个极大的独立集(即添加任何一个新的元素得到的子集都不是独立集),则将称为一个基底(英文:basis)。拟阵的一种等价定义为二元组,其中 是一个有限集, 是一个由基底构成的的子集族,称为的基,满足以下条件:[1]
可以证明,一个有限拟阵的所有基底的元素个数都相同,这个数被称为拟阵的秩。 环路对于有限拟阵 ,若其基础集的子集是一个极小的非独立集(即去掉其中任一元素得到的子集都是独立集),则将称为一个环路(英文:circuit)。拟阵的一种等价定义为二元组,其中 是一个有限集, 是一个由环路构成的的子集族,称为的环路集,满足以下条件:[1]
可以证明,基础集的一个子集是独立集当且仅当它不包含任一环路作为子集。 秩函数类似线性代数基底的性质,拟阵的基底具有类似的性质:的任意两个基底具有相同的元素个数。这个数字被称为拟阵的秩。 闭包参考资料
Information related to 拟阵 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve