本原元定理在数学中,本原元定理精确刻画了什么时候对于一个域扩张E/F,E可以表示为的形式,即E可以由单个元素生成。 定理一个有限扩张E/F有本原元,即存在使得,当且仅当E和F之间只有有限个中间域。 证明如果是有限域,由于是有限扩张,推得也是有限域。但是由于有限域的乘法群是循环群,任取这个乘法群的一个生成元,可以由这个生成元生成。所以在是有限域的情况下,定理左右两边恒为真。 如果是无限域,但是只有有限个中间域。 先证明一个引理:假设并且和之间只有有限个中间域,那么存在一个使得。引理的证明如下:当取遍的时候,对于每一个可以做一个中间域。但是由假设,只有有限个中间域,因此必定存在使得。由于都在这个域里,推得也在这个域里。由于,推得在这个域里,于是也在这个域里,因此,于是。引理证毕。 由于有限扩张总是有限生成的,推得(对于)。利用归纳法以及引理可以得出,如果之间只有有限个中间域,那么可以由单个元素生成。 而如果,假设是在上的极小多项式,是任意一个中间域,是在上的极小多项式。显然。由于域上的多项式环是唯一分解环,只有有限个因子。而对于每一个,如果写作,并令。显然是的一个子域,因此在上依然是不可约的。而同时,因此可以得到。这样立即推,于是任何一个中间域对应唯一的一个的因子。于是中间域个数小于因子的个数。但因子个数是有限的,因此中间域个数有限。证毕。 推论参见参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve