渐近线在解析几何和微分学中,曲线的渐近线(英語:asymptote[註 1])是一条使得当或坐标之一或两者趋于无穷大时,曲线与该线之间的距离接近零的线。在射影几何和相关上下文中,曲线的渐近线是在无穷大点处与曲线相切的线。 渐近线分为三种类型:水平、垂直和倾斜。对于由函数的图给出的曲线,水平渐近线是水平线,函数的图随着趋于或趋近于水平线。垂直渐近线是垂直线,函数在该垂直线附近无限增长。斜渐近线的斜率非零但有限,因此当趋于或时,函数的图接近该斜率。 更一般地说,如果两条曲线之间的距离趋于无穷大,则两条曲线之间的距离趋向于零,则一条曲线是另一条曲线的曲线渐近线,尽管术语“渐近线”本身通常是为线性渐近线保留的。 渐近线传达有关大曲线特性的信息,确定函数的渐近线是绘制函数图的重要步骤。从广义上讲,对功能渐近线的研究是渐近分析主题的一部分。当任意曲线上一点沿曲线无限远离原点时,如果到一条直线(或另外一条曲线)的距离无限趋近于零,那么这条直线(曲线)称为这条曲线的渐近线。數學上的定義則是:若函數的圖形收斂,則漸近線為。 例解例如,直线是双曲线的渐近线,因为双曲线上的点到直线的距离;当无限趋近于0时,也无限趋近于0。所以按照定义,直线是该双曲线的渐近线。同理,直线也是该双曲线的渐近线。 对于来说,如果当时,有(左右極限不一定相等),就把叫做的垂直渐近线;如果当时,有,就把叫做的水平渐近线。例如,是曲线的水平渐近线。 求法依据求渐近线,可以依据以下结论: 若极限存在,且极限也存在,那么曲线具有渐近线。 例子例:求的渐近线。 解:(1)为其垂直渐近线。 (2),即; ,即; 所以也是其渐近线。 注释
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve