满射
满射或蓋射(英語:surjection、onto),或稱满射函数或映成函數,一个函数为满射,則对于任意的陪域 中的元素 ,在函数的定义域 中存在一點 使得 。换句话说,是满射時,它的值域与陪域相等,或者,等价地,如果每一个陪域中的元素 其原像 不等於空集合。 例子和反例函数,定义为,不是一个满射,因为,(舉例)不存在一个实数满足。 但是,如果把的陪域限制到只有非负实数,则函数为满射。这是因为,给定一个任意的非负实数,我们能对求解,得到。
性质若將定義在上的函數,視為其圖像,即(集合論經常如此行),則滿射與否,不僅是的性質,而是映射(需要聲明陪域)的性質。[1]單射與否可以單憑圖像判斷,但滿射則不同,不能單憑圖像判斷,因為要知道陪域。 右可逆函數函數稱為函數的右逆,意思是對的所有元素成立。簡而言之,的效果,可以復原。用文字表示,是的右逆,意思是先做後做的複合,等於上的恆等函數,即不造成任何變化。此處不要求是的真正反函數,因為另一次序的複合,不必是的恆等函數。換言之,可以「復原」或「抵消」,但不必被復原或抵消。 若函數有右逆,則必為滿射。但反之,「每個滿射皆有右逆」此一命題,等價於選擇公理,故在某些集合論中(例如假設決定公理為真的集合論系統),不必為真。 右可消去函數是滿射,當且僅當其為右可消去:[2]給定任何兩個有公共定義域和陪域的函數,若,則有。此性質的敍述用到函數和複合,可以對應推廣成範疇的態射和複合。右可消的態射稱為滿態射或滿同態。滿射與滿態射的關係在於,滿射就是集合範疇中的滿態射。 範疇論中,有右逆的態射必為滿態射,但反之則不然。態射的右逆也稱為的截面。而有右逆的態射稱為分裂滿態射,是一類特殊的滿態射。 作為二元關係以為定義域,為值域的函數,可以視為兩集合之間的左全右唯一的二元關係,因為可將函數與圖像等同。此觀點下,由到的滿射,是右唯一而既左全又右全的關係。 定義域不小於陪域滿射的定義域,必有大於或等於其陪域的基數:若為滿射,則的元素個數必定至少等於的元素個數(在基數意義下)。但此結論的證明,需要假定選擇公理,以證明有右逆,即存在函數使得對的任意元素成立。滿足此性質的必為單射,故由基數大小比較的定義,有。 特別地,若和皆是有限,且兩者的元素個數相同,則是滿射當且僅當為單射。 給定兩個集合和,以表示「或者為空,或者存在由至的滿射」。利用選擇公理,可以證明,和兩者一起,足以推出。此為康托爾-伯恩斯坦-施羅德定理的變式。 複合與分解兩個滿射的複合仍是滿射:若和皆為滿射,且的陪域是的定義域,則也是滿射。反之,若為滿,則是滿射,但不必為滿射。與右可消去一節一樣,從集合範疇的滿射,可以推廣到一般範疇的滿態射。 任何函數都可以分解成一個滿射與一個單射的複合:對任意,都存在滿射和單射使得,取法如下:定義為所有原像的集合,其中歷遍的值域。該些原像兩兩互斥,且劃分。於是,將每個映到包含的原像(此為的元素),然後再將的每個元素(形如)映到相應的。則為滿射(因為中的元素,是原像,且非空,故有某個,所以由的定義有),而根據的定義,其為單射。 導出滿射和導出雙射任何函數,若將其陪域限制成值域,則可以視為滿射,稱為其導出滿射。任何滿射,若將定義域換成商集,即將函數值相同的參數,摺疊成同一個「等價類」,則得到一個雙射,其由等價類組成的集合,射去原函數的陪域。以符號表示,每個滿射可以分解成先做一個商映射,再做一個雙射。考慮以下等價關係:當且僅當。以表示此等價關係下,的等價類的集合。換言之,是所有原像的集合。以表示將映到等價類的商映射,又設,定義為,則。由定義知,是滿射,而是雙射。 相关条目參考文獻
|