皮亚诺公理
皮亚诺公理(英語:Peano axioms;義大利語:Assiomi di Peano),也称皮亚诺公设,是意大利数学家朱塞佩·皮亚诺提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。[1] 内容皮亚诺的这五条公理用非形式化方法叙述如下:
其中,一个数的后继数指紧接在这个数后面的数,例如,0的后继数是1,1的后继数是2等等;公理5保证了数学归纳法的正确性,从而被称为归纳法原理。 若不将0视作自然数,则公理1,4,5中的“0”要换成“1”。 更正式的定义如下: 一个戴德金-皮亚诺结构为一满足下列条件的三元组(X, x, f):
正式定义可以用谓词逻辑表示如下: 戴德金-皮亚诺结构可以描述为满足所有以下条件的三元组 (S, f, e) 皮亚诺算术皮亚诺算术(PA)的公理:
参见参考资料
延伸阅读
外部链接
本條目含有来自PlanetMath《PA》的內容,版权遵守知识共享协议:署名-相同方式共享协议。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve