立方數
第個立方數指可以寫成的數,當中必為整數。立方數是邊長的立方體的體積。作為算術用語的「立方」,表示任何數的三次冪,可用³(Unicode字元179)來表示。 若將立方数概念扩展到有理数,则两个立方数的比仍然是立方数,例如, (2 × 2 × 2) / (3 × 3 × 3) = 8/27 = 2/3×2/3×2/3。 若一个整数没有除了 1 之外的立方数為其因數,则称其为無立方數因數的數。 首十二個立方數 A000578為:1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, ...(第零個是0) 雖然形狀不同,每個立方數第個立方數同時都是第個六角錐數,即首個中心六邊形數之和。 立方數和每個整數均可表示成9個或以下的正立方數之和。(華林問題) 1939年,狄克森證明只有23和239需要用9個正立方數的和來表示。 亞瑟·韋伊費列治證明只有15個整數須用8個:15, 22, 50, 114, 167, 175, 186, 212, 231, 238, 303, 364, 420, 428, 454 ( A018889) 的士數和士的數都指最小能表示成兩個立方數之和的數,但的士數的必須為正數,士的數則無此限。(見1729) 只有一組連續三個立方數之和亦是立方數,就是3, 4, 5的立方,其和等於6的立方。 在十进制,除了1之外,僅有4個的正整數其數字立方之和等同它本身,它們為153, 370, 371, 407,他們是的自戀數。這4個三位數,亦可視為將它的數字分成三份,每份的立方之和,相似性質的整數有無限個,如165033, 221859, 336700等( A056733)。 性質
涉及立方数和的问题的整数解其他
参见註釋
外部链接参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve