等腰三角形
在幾何學中,等腰三角形(英語:Isosceles triangle)是指至少有兩邊長度相等的三角形,因此會造成有2個角相等。相等的兩個邊稱等腰三角形的腰,另一邊稱為底邊,相等的兩個角稱為等腰三角形的底角,其餘的角叫做頂角。[1] 等腰三角形的重心、和垂心都位於頂點向底邊的垂线,可以把等腰三角形分成兩個全等的直角三角形。[2] 等邊三角形是底邊和腰等長的等腰三角形,是等腰三角形的一個特殊形式。若等腰三角形的頂角為直角,稱為等腰直角三角形。 命名等腰三角形在英文中稱為isosceles,來自希臘文,意思是“等長的腳”[2] 性質等腰三角形具有下列性質[1]:P.204:
等腰三角形定理若一三角形的二邊相等,則二邊的對角相等,此定理列在歐幾里德的《幾何原本》中,稱為驢橋定理,也是等腰三角形定理。驢橋定理是在幾何原本的前面出現的較困難命題,是數學能力的一個門檻[3],無法理解此一命題的人可能也無法處理後面更難的命題。 驢橋定理的逆定理是若一三角形的二角相等,則二角的對邊相等。 等腰三角形的全等若二等腰三角形,其腰相等,底邊也相等,即可以用SSS全等證明二個等腰三角形全等,而三角形的角可以用餘弦定理求得。 等腰三角形的相似等腰三角形的頂角 和底角有以下的關係: 已知其中一個就可以知道另一個,若二等腰三角形的頂角相等或底角相等,即可以用AAA相似證明二個等腰三角形全等,各邊的關係可以用正弦定理求得。 對稱軸等腰三角形為軸對稱,其對稱軸和底邊的高、中垂線、中線及頂角的角平分線重合(三线合一)[4]。等腰三角形的內心、外心、重心、垂心及顶点所对旁心五心共線,都在對稱軸上[5]。
和其他圖形的關係
相關條目參考文獻
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve