类星体類星體 (英語:quasar,/ˈkweɪzɑːr/,也以QSO或quasi-stellar object為人所知)是極度明亮的活躍星系核(AGN,active galactic nucleus)。大多數星系的核心都有一個超大質量黑洞,它的質量從百萬至數十億太陽質量不等。在類星體和其它形式的活躍星系核,黑洞被氣態的吸積盤環繞著。當吸積盤中的氣體朝向黑洞墜落,能量就會以電磁輻射的形式釋放出來。這些輻射被觀測到,發現它可以跨越電波、紅外線、可見光、紫外線、X射線、和γ射線等電磁頻譜的波長。類星體輻射的功率非常巨大:最強大的類星體的光度超過1041 瓦特,是銀河系等普通星系的數千倍[2]。“類星體”這個名詞源自於準恆星狀電波源(quasi-stellar[star-like] radio source)的縮寫,因為在1950年代發現這種天體時,被認定為未知物理源的電波發射源,當在可見光的照相圖中篩檢出來時,它們類似可見光的星狀微弱光點。類星體的高解析影像,特別是哈伯太空望遠鏡,已經證明類星體是發生在星系的中心,一些類星體的宿主星系是強烈的交互作用星系或合并中的星系[3]。與其它類型的活躍星系核,類星體的觀測性質取決於許多因素,包括黑洞的質量、氣體的吸積率、吸積盤相對於觀測者的方向、存在或沒有噴流、和被氣體和在宿主星系內宇宙塵的消光 (天文學)程度。類星體存在的距離非常廣泛(對應於範圍從Z<0.1至Z>7.0為最遙遠的類星體),類星體發現的調查證明類星體的活動在遙遠的過去更為常見。類星體活躍的高峰時期在宇宙對應於紅移大約2,也就是100億年前[4]。截至2017年,發現已知最遙遠的類星體是ULAS J1342+0928,紅移z=7.54;觀測從這個類星體發出的光,觀測到當時的宇宙年齡只有6.9億歲。這個類星體中的超大質量黑洞是迄今為止發現的最遙遠黑洞。估計它的質量是我們的太陽的8億倍[5][6][7]。 詞源"類星體"這個名詞是由華裔美國天文物理學家丘宏義在1964年5月發表在《今日物理學》中,描述某些天文學上令人費解的天體時創造的:
觀測和解釋的歷史背景在1917年和1922年間,由於希伯·柯蒂斯、恩斯特·奧匹克和其他人的工作,有些天體("星雲")被天文學家看見實際上是像我們銀河系一樣的遙遠星系。但是,當電波天文學在20世紀50年代開啟時,天文學家在星系之間發現少量的異常天體,它們的屬性是難以解釋的。 這些物體在許多頻率上發射大量的輻射,但沒有一個可以在可見光上定出位置,或者在某些情況下只有一個微弱和點狀的物體,有點像一顆遙遠的恆星。這些物體的譜線,標示物體組成的化學元素,也非常的奇怪,並且無從解釋。它們中的一些,在可見光的範圍內非常迅速的改變光度,甚至在X射線範圍內能更迅速的變化,暗示它們大小的上限,也許不大於我們自己的太陽系[8]。這意味著有非常高的功率密度[9]。 對這些天體可能是甚麼進行了大量的討論。它們被描述為"準星"(意思是像星但不是星)"電波來源"或"準星天體"(QSOs),這個名字反映出當時對這種天體的無知,然後被縮短成"類星體"("quasar")。 早期的觀測(1960年代之前)最早的類星體(3C 48和3C 273)是在1950年代後期的全天電波源調查中發現的[10][11][12][13]。人们首先注意到沒有可見光天體能與这两个電波源對應。用小望遠鏡和洛弗爾望遠鏡作為干涉儀,證實它们的視直徑非常小[14]。當天文學家在天空中掃描它們的光學對應體時,有數以百計的這類天體被記錄在劍橋的3C星表。在1963年,艾倫·桑德奇和Thomas A. Matthews發表文章證明電波源3C 48有明確的光學對應體。天文學家在電波源的位置發現一顆微弱的藍色恆星,並獲得了他的光譜,其中有許多未知的寬闊發射譜線。这种反常的頻譜讓天文學家難以解釋。 英澳天文學家約翰·博爾頓對類星體做了許多早期的觀測。其中,1962年的一次观测获得了突破性的进展。一個電波源3C 273,当时预计將被月球掩蔽5次。Cyril Hazard和約翰·博爾頓使用帕克斯電波望遠鏡測量了其中一次的掩蔽,讓馬爾滕·施密特找到一個可以和這個電波源對應的可見光源,並且使用帕洛瑪山200吋的海爾望遠鏡取得可見光的光譜。這一光譜顯示了同樣的奇怪發射譜線。通过谱线之间的相对强度,施密特證明了這些都是普通的氫譜線,只是被紅移了15.8%。这是天文學家從未見過的極端紅移,如果這是由於星体的移動造成,那麼3C 273的速度約為每秒47,000公里,遠遠超過任何已知恆星的速度,並違背了当时所有的可能理论解释[15]。極端的速度也不能說明3C 273巨大的電波發射量。 雖然它引發了許多問題,但施密特的發現迅速徹底改革了類星體的觀測。3C 48奇怪的光譜迅速的被施密特、格林斯坦和Oke發現是氫和鎂被紅移37%的譜線。不久之後,1964年有2個以上,1965年有5個以上的類星體光譜被證明是普通的光譜線被極端程度的紅移造成[16]。 雖然,這些觀測和紅移本身沒有被懷疑,但如何正確的解釋卻引起了爭議。博爾頓建議從類星體發射的輻射,來源是高度紅移的遙遠高速天體的普通光譜線,在當時未被廣泛地接受。 物理的理解和發展(1960年代)类星体的命名类星体的命名统一在前面冠以类星体的英文缩写QSO,然后加上类星体在天球上的位置坐标。例如:类星体3C48,位于赤经13h35m,赤纬+33度,于是命名为QSO01335+33。 类星体的特征绝大多数类星体都有非常大的红移值(用Z表示)。类星体3C273(QSO1227+02)的Z=0.158,远远超过了一般恒星的红移值。有不少类星体的红移值超过了1,有的甚至达到4以上,至今发现的最远的类星体为ULAS J1120+0641,其红移达到7.1,形成於大爆炸7.5億年後。ULAS J1342+0928形成於大爆炸6.9億年後,是已知最古老的類星體和超大質量黑洞。[17]根据哈伯定律,它们的距离远在几亿到上百亿光年之外。 观测发现,有的类星体在几天到几周之内,光度就有显著变化。因为辐射在星体内部的传播速度不可能快于光速,因此可以判定这些类星体的大小最多只有几“光日”到几“光周”,大的也不过几光年,远远小于一般的星系尺度。 类星体最初是在射电波段发现的,然而它在光学波段、紫外波段、X射线波段都有很强的辐射,射电波段的辐射只是很小的一部分。 根据以上事实可以想到,既然类星体距离我们如此遥远,而亮度看上去又与银河系裡普通的恒星差别不大(例如3C 273的星等为13等),那么它们一定具有相当大的辐射功率。计算表明,类星体的辐射功率远远超过普通星系,有些竟然达到银河系辐射总功率的数万倍。而它们的大小又远比星系小,这就出現能量疑难,也就是说:尚无法确认类星体的能量来源。 历史上的研究在类星体发现后的二十余年时间里,人们众说纷纭,陆续提出了各种模型,试图解释类星体的能源疑难。比较有代表性的有以下几种:
目前研究以黑洞說為主流。[18]对类星体的进一步观测发现了一些新的现象,例如光谱中不同元素的谱线红移值并不相同,发射线和吸收线的红移值也不尽相同。 在一些类星体中发现了超光速运动的现象。例如1972年,美国天文学家发现类星体3C120的膨胀速度达到了4倍光速。还有人发现类星体3C273中两团物质的分离速度达到了9倍光速。而类星体3C279(QSO1254-06)内物质的运动速度达到光速的19倍。人们起初认为这对相对论提出了巨大的挑战。最近的研究表明,这些超光速运动现象只是“视超光速”现象,起因于类星体发出的与观测者视线方向夹角很小的亚光速喷流,实际上并没有超过光速。 活动星系核模型20世纪90年代中期,随着观测技术的提高,类星体的谜团开始逐渐被揭开。其中一个重要的成果是观测到了类星体的「宿主星系」,并且测出了它们的红移值。由于类星体的光芒过于明亮,掩盖了宿主星系相对暗淡的光线,所以宿主星系之前并没有引起人们的注意。直到在望远镜上安装了类似观测太阳大气用的日冕仪一样的仪器,遮挡住类星体明亮的光,才观测到了它们所处的宿主星系。 现在科学界已经达成共识,类星体实际是一类活动星系核(AGN)。而在同一时期,赛弗特星系和蝎虎BL天体也被证实为是活动星系核,一种试图统一射电星系、类星体、赛弗特星系和蝎虎BL天体的活动星系核模型逐渐受到普遍认可。 这个模型认为,在星系的核心位置有一个超大質量黑洞,在黑洞的强大引力作用下,附近的尘埃、气体以及一部分恒星物质围绕在黑洞周围,形成了一个高速旋转的巨大的吸积盘。在吸积盘内侧靠近黑洞视界的地方,物质掉入黑洞里,伴随着巨大的能量辐射,形成了物质喷流。而强大的磁场又约束着这些物质喷流,使它们只能够沿着磁轴的方向,通常是与吸积盘平面相垂直的方向高速喷出。如果这些喷流刚好对着观察者,就观测到了类星体,如果观察者观测活动星系核的视角有所不同,活动星系核则分别表现为射电星系、赛弗特星系和蝎虎BL天体。这样一来,类星体的能量疑难初步得到解决。 类星体与一般的那些“平静”的星系核不同之处在于,类星体是年轻的、活跃的星系核。由类星体具有较大的红移值,距离很遥远这一事实可以推想,我们所看到的类星体实际上是它们许多年以前的样子,而类星体本身很可能是星系演化早期普遍经历的一个阶段。随着星系核心附近“燃料”逐渐耗尽,类星体将会演化成普通的旋涡星系和椭圆星系。 參考資料
参阅外部链接 |