電傳導
電傳導(英語:electrical conduction)是指介質內,載電荷的粒子的運動。稱這些粒子為電荷載子。它們的運動形成了電流。這運動可能是因為感受到電場的作用而產生的,或是因為載子分佈的不均勻引發的擴散機制的結果。對於不同的物質,電荷傳輸的物理參數也不同。根据物质电传导性的不同可以分为导体和绝缘体。常见的导体有金属,电解质溶液或液体。常见的绝缘体有干燥的木材、塑料、橡胶。 歐姆定律明確地描述了金屬和電阻器的電傳導。歐姆定律闡明,電流與外加的電場成正比,在一個物質內,由於外加的電場 而產生的電流密度 ,可以用方程式表達為
其中, 是物質的電導率; 或者,
在半導體元件裏,電傳導是由電場作用和擴散這兩種物理機制共同引發的。因此,電流密度可以表達為
其中, 是擴散常數, 是電荷量, 是電子的體積密度。 由於電子的電荷量是負值,載子是朝著電子密度遞減的方向移動。因此,對於電子,假若電子密度的梯度是正值,則電流是負值;假若載子是電洞,則必須將電子密度 改換為電洞密度 的負值:
經典概念設想外電場 作用於某物體。在這物體內,電荷量為 的自由電子,感受到電場力 ,會呈現加速運動。 沒有任何障礙阻止這運動,自由電子的速度會變得越來越大。然而,每經過一段時間 ,自由電子會碰撞到其它原子的阻礙,使其速度回歸為熱速度 (thermal velocity) 。這樣,自由電子的運動會呈現不斷的加速與碰撞。每一次碰撞,累積的動量 平均為
其中,角括弧代表平均程序。 所以,電流密度 為
其中, 是電子密度, 是自由電子的平均速度, 是電子質量。 這經典模型是由保羅·德鲁德於 1900 年提出,稱為德鲁德模型。從這模型得到了一個重要結果:電流密度與電場成正比,比例是物質的電導率 [1] [2] 。 電解質在電解液裏的電流是載有電荷的離子流。例如,施加電場於 Na+ 和 Cl– 的溶液。那麼,鈉離子會不斷地移向負極;而氯離子會往正極移動。在正常狀況下,氧化還原反應會發生於電極表面,將氯離子的電子釋放出來,經過導線傳輸到另外一端,讓電子被鈉離子吸收。 水-冰混和物和某些稱為質子導體 (proton conductor) 的固態電解質,含有可移動的正價氫離子。對於這些物質,電流是由移動的質子形成的。 在某些電解質混合物裏,一群鮮豔著色的離子形成了移動的電荷。這些離子的緩慢移動所形成的電流,可以用人眼直接地觀察到。 氣體和電漿對於空氣和一些普通氣體,假設施加的外低於击穿电場阈值,電傳導的主要電荷載子是由放射性氣體、紫外光和宇宙射線造成的相當少數量的可移動離子。由於電導率非常低,氣體是電介質或絕緣質。但是,一當施加的外電場超過击穿值時,由於電場力的作用,自由電子呈加速運動,動能變得相當大,足夠以碰撞機制來製造更多的自由電子,或用雪崩击穿的機制將中性氣態原子或中子電離。這程序形成了電漿,含有很多的可移動的電子和正離子,使電漿的物理行為變得就像一個導體。這程序的傳導路徑上,會有光波發射出來,像電光 (spark) 、電弧、閃電等等。 電漿態是一種物質態。當氣體的分子或原子的一些電子被電離時,稱此狀態的物質為電漿。非常高的溫度,或強大的電場或磁場的作用,會產生電漿。由於電子的質量很小,當施加電場時,電漿的電子會比很重的正離子更快加速。大部分的電流是由電子形組成的。 真空由於在理想真空 (perfect vacuum) 內,沒有任何帶電粒子,這種真空就好像理想絕緣體。但是,通過場致電子發射 (field electron emission) 或熱離子發射 (thermionic emission) 的機制,金屬的電極表面會發射自由電子或離子於真空,因而使得真空內的一部分區域變得具有傳導性。當熱能超過金屬的功函數時,就會產生熱離子發射,金屬會發射出熱離子。當金屬表面的電場有足夠的強度來引發量子穿隧效應時,就會出現場致電子發射,促使金屬原子射出電子於真空。 參閱參考文獻
|