Word2vec是一群用來產生詞向量的相關模型。這些模型為淺层雙層的神經網路,用來訓練以重新建構語言學之詞文本。網路以詞表現,並且需猜測相鄰位置的輸入詞,在word2vec中词袋模型假設下,詞的順序是不重要的。
訓練完成之後,word2vec模型可以把每個詞映射到一個向量,來表示詞与詞之間的關係。該向量為神經網路的隱藏層[1]。
Word2vec依賴skip-grams或連續詞袋(CBOW)來建立神經詞嵌入。Word2vec為托馬斯·米科洛夫(Tomas Mikolov)在Google帶領的研究團隊創造。該演算法漸漸被其他人所分析和解釋[2][3]。
Skip-grams和CBOW
CBOW把一個詞從詞窗剔除。在CBOW下給定n詞圍繞著詞w,word2vec預測一個句子中其中一個缺漏的詞c,即以機率來表示。相反地,Skip-gram給定詞窗中的文本,預測當前的詞。
延伸
Word2vec用來建構整份文件(而分獨立的詞)的延伸應用已被提出[4],
該延伸稱為paragraph2vec或doc2vec,並且用C、Python[5][6]和 Java/Scala[7]實做成工具(參考下方)。Java和Python也支援推斷文件嵌入於未觀測的文件。
分析
對word2vec框架為何做词嵌入如此成功知之甚少,約阿夫·哥德堡(Yoav Goldberg)和歐莫·列維(Omer Levy)指出word2vec的功能導致相似文本擁有相似的嵌入(用余弦相似性計算)並且和約翰·魯伯特·弗斯的分佈假說有關。
實作
參見
参考文献
可微分计算 |
---|
概论 | |
---|
概念 | |
---|
应用 | |
---|
硬件 | |
---|
软件库 | |
---|
实现 | |
---|
人物 | |
---|
组织 | |
---|
架构 | |
---|
- 主题
- 分类
|