公平分配博弈公平分配博弈,是指为若干个分配者分配有限数量的资源时的博弈。当资源为一种物质又可分割时,分配将会很容易进行。但资源种类复杂、不可分,而分配者的喜好各不相同时,分配将会难以进行。例如将17头品种不同的活牛分给三个人。 解决方案当资源可以分割时,有如下方法分配资源:[1]
但這個方法在理論上有缺陷,因為它用到了 "隨機選取" 來顯現公平性。如果我們允許用隨機分配來解這個命題,則答案可以簡化為 "由一人分配,隨機分給三人;為了不讓自己拿到價值最差的一份,分配者必會完全公平。" 如此一來則失去了意義。
參見来源
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve