分團問題在計算複雜度理論中,分團問題(clique problem)是圖論中的一個NP完全(NP-complete)問題。 团(clique)是一個圖中兩兩相鄰的一個頂點集,或是一個完全子圖(complete subgraph),如右圖中的1、2、5三個頂點。 分团问题是問一個圖中是否有大小是k以上的团。任意挑出k個點,我們可以簡單的判斷出這k個點是不是一個团,所以這個問題屬於NP。 證明這問題是NP完備,我們可以很簡單的將獨立頂點集問題(Independent set problem)歸約成這個問題。因為存在一個大小是k以上的分團,等價於它的補圖中存在一個大小是k以上的獨立集。 演算法最簡單的方法是用暴力法列舉圖中所有k個點的子集合,並檢查它是不是团。在一個有V個點的圖中用暴力法找大小是k的团至少要檢查個子集合。 另外一個启发式的方法是先找出所有一個點的团,再慢慢合併成更大的团直到不能再合併為止。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve