少数派博弈厄爾法羅酒吧問題,又稱少數派博弈,是一種經常出現在經濟活動中的博弈行為。該模型源自由1994年W·布萊恩·亞瑟提出了El Farol酒吧問題[1]。 在这一博弈中,参与者们拥有两种选择(例如0和1)。所有人都做出选择之后,将参与者按照所做的选择分为两派。人数较少的那一方,也就是少数派将会获胜。该博弈还可以进一步分为是否多次进行,参与者是否记得之前游戏的结果等多种类型。 变体形式El Farol酒吧问题El Farol酒吧問題(El Farol Bar problem)是1994年由斯坦福大學經濟學教授威廉·布萊恩·阿瑟提出的一個具有代表性的資源分配問題。該問題可以被這樣表述: 在一個鎮上有一間不錯的酒吧,鎮上的一群人(比如總共有100人),每個週末晚上沒什麼事,於是他們均要決定,是去鎮上的酒吧消遣娛樂還是選擇呆在家裡休息。該酒吧的客容量是有限的,比如房間空間是有限的,或者酒吧座位是有限的。我們假定酒吧的容量是40人,或者說座位是40個。如果當天去酒吧的人數少於40人,那麼在酒吧的人可以充分享受到優雅的環境和優質的服務,因此相比呆在家裡他去酒吧是更享受的決定;但是,如果去酒吧的人超過40人,那麼由於環境太過擁擠造成去酒吧享受不到優質的服務,與其這樣還不如選擇呆在家裡更明智。 這個酒吧問題的難點在於,每個人都有類似的想法,我們假定這100個人之間不存在訊息交流,於是他們每個週末都要對去酒吧的人數進行預測,而決定自己去不去酒吧。這裡每個人決策的依據只能是以往的歷史訊息,但是不同人根據歷史歸納出的規律可能不同。這是一個經典的動態博弈問題。通過計算機模擬,亞瑟得出一個有趣的結果:儘管不存在一個可預測的規律,經過一段時間以後,這群人卻自組織形成一個均衡態,即平均去酒吧的人數趨向少於酒吧容量。 加尔各答派萨问题参见参考资料
外部链接
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve