正規化均方根誤差正規化均方根誤差(英語:normalized root-mean-square error,縮寫為NRMSE)是將均方根誤差正規化後所得的統計數值。正規化均方根誤差經常被被使用於量測兩個信號,如圖像、影片,及聲音訊號等之間的相似度。 定義在影像處理中,給定兩個單色影像 和,那麼它們的正規化均方根誤差可定義如下: NRMSE於影像辨識常見的缺點NRMSE理論上能夠比較兩個影像的差異,但實際上可能無法反映出人類對於的兩個訊號之間的相似度的直觀感受。NRMSE只是利用兩個影像的差異取絕對值的平方,相加後正規化再開平方,並沒有考慮兩張圖之間的相關性。例子如下圖:
照理來說,人類會直觀地認為圖一和圖三較相近。然而,圖一和圖二的NRMSE與圖一和圖三的NRMSE數值上的差異卻非常小,無法明顯地表現出圖一和圖三的相似性。有鑑於NRMSE無法完全反映人類視覺上所感受的誤差,2004年有提新的誤差測量方法被提出,名稱為結構相似性(structural similarity,SSIM)。若使用SSIM:
結構相似性量測法比NRMSE更能表現圖一、圖三之間存在著的極高的相似度。接下來將舉例3個 NRMSE 無法看出相似度,但是可以用SSIM 看出相似度的情形: 影子效應
底片效應
同形,但亮度不同的影像
其他有類似缺點的相似度量測工具:MSE、PSNR除了NRMSE以外,均方误差(mean square error,MSE)及峰值信噪比(又稱訊噪比,PSNR)皆有著類似的影像辨識缺點,原因在於它們有著相似的定義。 MSE的定義: PSNR的定義: 參見參考文獻 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve