Fc段能与Fc受体结合的特征对于抗体激发免疫系统而言十分重要。Fc段有不同的亚类,并且可以经由糖基化等过程进行修饰改造。Fc段的变化会影响抗体与Fc受体结合的能力,并决定抗体所引发的免疫应答类型。[13]包括细胞程序性死亡受体1(英语:Programmed cell death protein 1)(PD-1)抑制剂与细胞程序性死亡配体1(PD-L1)抑制剂在内的许多癌症免疫治疗药物都是抗体。比如抗PD-1的免疫检查点(英语:Immune checkpoint)阻断药可以与T细胞上表达的PD-1结合,从而激活T细胞以清除肿瘤。[14]除了与PD-1结合的Fab段外,抗PD-1药物也有Fc段。实验表明免疫药物的Fc段能够影响疗效。例如,抗PD-1药物的Fc段如果与抑制性Fc受体结合会对疗效有负面影响。[15]影像研究进一步表明抗PD-1药物的Fc段可能与肿瘤相关巨噬细胞表达的Fc受体结合,导致药物从其目标的T细胞上被夺去,限制了治疗效果。[16]此外,以共刺激蛋白CD40为靶点的抗体需要与特定的Fc受体作用以达到最佳效果。[17]这些研究说明了基于抗体的免疫检查点阻断疗法中Fc段的重要性。
跨膜蛋白细胞程序性死亡受体1(英语:Programmed cell death protein 1)(PD-1,又称CD279)与其配体细胞程序性死亡配体1(PD-L1,又称CD274)间的相互作用是一个研究热点。癌細胞表面的PD-L1能够与免疫细胞表面的PD-1相结合,以维护免疫抑制环境。PD-L1能调节T细胞功能,肿瘤通过上调PD-L1表达来抑制T细胞的活化。此外,PD-L1还能抑制依赖FAS与干扰素的细胞凋亡过程,从而保护癌細胞免受由T细胞生成的细胞毒分子的杀伤。能够与PD-1或PD-L1结合的抗体可用于阻断它们的相互作用,以使T细胞发挥功能、攻击肿瘤。[76]
^Gardner TA, Elzey BD, Hahn NM. Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Human Vaccines & Immunotherapeutics. April 2012, 8 (4): 534–9. PMID 22832254. doi:10.4161/hv.19795.
^Sims RB. Development of sipuleucel-T: autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer. Vaccine. June 2012, 30 (29): 4394–7. PMID 22122856. doi:10.1016/j.vaccine.2011.11.058.
^Shore ND, Mantz CA, Dosoretz DE, Fernandez E, Myslicki FA, McCoy C, Finkelstein SE, Fishman MN. Building on sipuleucel-T for immunologic treatment of castration-resistant prostate cancer. Cancer Control. January 2013, 20 (1): 7–16. PMID 23302902. doi:10.1177/107327481302000103.
^Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV. Type I and type II Fc receptors regulate innate and adaptive immunity. Nature Immunology. August 2014, 15 (8): 707–16. PMID 25045879. doi:10.1038/ni.2939.
^Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine. June 2012, 366 (26): 2443–54. PMC 3544539. PMID 22658127. doi:10.1056/NEJMoa1200690.
^Dahan R, Sega E, Engelhardt J, Selby M, Korman AJ, Ravetch JV. FcγRs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis. Cancer Cell. October 2015, 28 (4): 543. PMID 28854351. doi:10.1016/j.ccell.2015.09.011.
^Gelderman KA, Tomlinson S, Ross GD, Gorter A. Complement function in mAb-mediated cancer immunotherapy. Trends in Immunology. March 2004, 25 (3): 158–64. PMID 15036044. doi:10.1016/j.it.2004.01.008.
^Demko S, Summers J, Keegan P, Pazdur R. FDA drug approval summary: alemtuzumab as single-agent treatment for B-cell chronic lymphocytic leukemia. The Oncologist. February 2008, 13 (2): 167–74. PMID 18305062. doi:10.1634/theoncologist.2007-0218.
^Lemery SJ, Zhang J, Rothmann MD, Yang J, Earp J, Zhao H, McDougal A, Pilaro A, Chiang R, Gootenberg JE, Keegan P, Pazdur R. U.S. Food and Drug Administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab. Clinical Cancer Research. September 2010, 16 (17): 4331–8. PMID 20601446. doi:10.1158/1078-0432.CCR-10-0570.
^James JS, Dubs G. FDA approves new kind of lymphoma treatment. Food and Drug Administration. AIDS Treatment News. December 1997, (284): 2–3. PMID 11364912.
^ 37.037.1Thumar JR, Kluger HM. Ipilimumab: a promising immunotherapy for melanoma. Oncology. December 2010, 24 (14): 1280–8. PMID 21294471.
^ 38.038.1Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annual Review of Immunology. 2001, 19: 565–94. PMID 11244047. doi:10.1146/annurev.immunol.19.1.565.
^Keating GM. Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs. July 2010, 70 (11): 1445–76. PMID 20614951. doi:10.2165/11201110-000000000-00000.
^ 48.048.1Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews. Cancer. January 2004, 4 (1): 11–22. PMID 14708024. doi:10.1038/nrc1252.
^Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nature Reviews. Immunology. November 2006, 6 (11): 836–48. PMID 17063185. doi:10.1038/nri1961.
^Razaghi A, Owens L, Heimann K. Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation. Journal of Biotechnology. December 2016, 240: 48–60. PMID 27794496. doi:10.1016/j.jbiotec.2016.10.022.
^Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nature Reviews. Drug Discovery. August 2015, 14 (8): 561–84. PMID 26228759. doi:10.1038/nrd4591.
^Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Annals of Oncology. January 2018, 29 (1): 84–91. PMID 29228097. doi:10.1093/annonc/mdx755.
^Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, Du VY, Wang JX, Damsky W, Kuhlmann AL, Sher JW, Bosenberg M, Miller-Jensen K, Kaech SM. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. The Journal of Experimental Medicine. March 2018, 215 (3): 877–893. PMID 29436395. doi:10.1084/jem.20171435.
^Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nature Biomedical Engineering. 2018-05-21. doi:10.1038/s41551-018-0236-8.
^Andersen R, Borch TH, Draghi A, Gokuldass A, Rana MA, Pedersen M, Nielsen M, Kongsted P, Kjeldsen JW, Westergaard MC, Radic HD, Chamberlain CA, Holmich LR, Hendel HW, Larsen MS, Met O, Svane IM, Donia M. T cells isolated from patients with checkpoint inhibitor resistant-melanoma are functional and can mediate tumor regression.. Ann. Oncol. April 2018. PMID 29688262. doi:10.1093/annonc/mdy139.
^Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunological Reviews. March 2017, 276 (1): 145–164. PMID 28258703. doi:10.1111/imr.12527.
^Veillette A, Chen J. SIRPα-CD47 Immune Checkpoint Blockade in Anticancer Therapy. Trends in Immunology. March 2018, 39 (3): 173–184. PMID 29336991. doi:10.1016/j.it.2017.12.005.
^Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H, Cuillerot JM, Reck M. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Journal of Clinical Oncology. June 2012, 30 (17): 2046–54. PMID 22547592. doi:10.1200/JCO.2011.38.4032.
^Clinical trial number NCT01928394 for "A Study of Nivolumab by Itself or Nivolumab Combined With Ipilimumab in Patients With Advanced or Metastatic Solid Tumors" at ClinicalTrials.gov
^ 82.082.1van Hooren L, Sandin LC, Moskalev I, Ellmark P, Dimberg A, Black P, Tötterman TH, Mangsbo SM. Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer. European Journal of Immunology. February 2017, 47 (2): 385–393. PMID 27873300. doi:10.1002/eji.201646583.
^Aleem E. β-Glucans and their applications in cancer therapy: focus on human studies. Anti-Cancer Agents in Medicinal Chemistry. June 2013, 13 (5): 709–19. PMID 23140353. doi:10.2174/1871520611313050007.