Share to: share facebook share twitter share wa share telegram print page

تدرج (رياضيات)

تدرج
معلومات عامة
صنف فرعي من
تعريف الصيغة
عدل القيمة على Wikidata
الرموز في الصيغة



عدل القيمة على Wikidata
التدوين الرياضي
عدل القيمة على Wikidata
في الصورتين أعلاه، الحقل القياسي باللونين الأسود والأبيض والحقل المتجهي باللون الأزرق. اللون الأسود يعبر عن قيم عالية. والأسهم الزرقاء تمثل التدرج المقابل.

في حساب المتجهات ، التَدَرُّج[1] (بالإنجليزية: Gradient)‏ ورمزه مؤثر تفاضلي على غرار مؤثري الدوران والتباعد. يؤثر التدرج على الحقول القياسية وينتج حقولا متجهية يتركز في اتجاه أعلى معدل تزايد للحقل القياسي.

الصيغة الرياضية

يحسب تدرج حقل قياسي في الإحداثيات الديكارتية ثلاثية الأبعاد وفقا لما يلي:



أما في الإحداثيات القطبية فوفقا للتالي:

وفي الإحداثيات الإسطوانية

أما في الإحداثيات الكروية

العمليات على المتجهات

يدرس التفاضل الشعاعي العديد من العمليات التفاضلية معرفة في الحقل الشعاعي أو السلمي، والتي يعبر عنها غالباً على شكل معامل نابلا (). العمليات الرئيسية الأربعة في التفاضل الشعاعي هي:

العملية الترميز الوصف المجال
تدرج Gradient تقيس معدل وجهة التغير في الحقل السلمي. تسقط الحقل السلمي على الحقل الشعاعي.
دوران Curl يقيس قابلية الدوران حول نقطة في الحقل الشعاعي. يسقط الحقل الشعاعي على الحقل الشعاعي.
تباعد Divergence يقيس ميل المصدر أو المصرف عند نقطة معينة في الحقل الشعاعي. يسقط الحقل الشعاعي على الحقل السلمي.
لابلاسي Laplacian مركب من عمليتي التباعد والتدرج. يسقط الحقل السلمي على الحقل السلمي.

مراجع

  1. ^ موفق دعبول؛ بشير قابيل؛ مروان البواب؛ خضر الأحمد (2018)، معجم مصطلحات الرياضيات (بالعربية والإنجليزية)، دمشق: مجمع اللغة العربية بدمشق، ص. 286، OCLC:1369254291، QID:Q108593221
Kembali kehalaman sebelumnya