Share to: share facebook share twitter share wa share telegram print page

Climate

Climate is the long-term weather pattern in a region, typically averaged over 30 years.[1][2] More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorological variables that are commonly measured are temperature, humidity, atmospheric pressure, wind, and precipitation. In a broader sense, climate is the state of the components of the climate system, including the atmosphere, hydrosphere, cryosphere, lithosphere and biosphere and the interactions between them.[1] The climate of a location is affected by its latitude, longitude, terrain, altitude, land use and nearby water bodies and their currents.[3]

Climates can be classified according to the average and typical variables, most commonly temperature and precipitation. The most widely used classification scheme was the Köppen climate classification. The Thornthwaite system,[4] in use since 1948, incorporates evapotranspiration along with temperature and precipitation information and is used in studying biological diversity and how climate change affects it. The major classifications in Thornthwaite's climate classification are microthermal, mesothermal, and megathermal.[5] Finally, the Bergeron and Spatial Synoptic Classification systems focus on the origin of air masses that define the climate of a region.

Paleoclimatology is the study of ancient climates. Paleoclimatologists seek to explain climate variations for all parts of the Earth during any given geologic period, beginning with the time of the Earth's formation.[6] Since very few direct observations of climate were available before the 19th century, paleoclimates are inferred from proxy variables. They include non-biotic evidence—such as sediments found in lake beds and ice cores—and biotic evidence—such as tree rings and coral. Climate models are mathematical models of past, present, and future climates. Climate change may occur over long and short timescales due to various factors. Recent warming is discussed in terms of global warming, which results in redistributions of biota. For example, as climate scientist Lesley Ann Hughes has written: "a 3 °C [5 °F] change in mean annual temperature corresponds to a shift in isotherms of approximately 300–400 km [190–250 mi] in latitude (in the temperate zone) or 500 m [1,600 ft] in elevation. Therefore, species are expected to move upwards in elevation or towards the poles in latitude in response to shifting climate zones."[7][8]

Definition

Climate (from Ancient Greek κλίμα 'inclination') is commonly defined as the weather averaged over a long period.[9] The standard averaging period is 30 years,[10] but other periods may be used depending on the purpose. Climate also includes statistics other than the average, such as the magnitudes of day-to-day or year-to-year variations. The Intergovernmental Panel on Climate Change (IPCC) 2001 glossary definition is as follows:

"Climate in a narrow sense is usually defined as the "average weather", or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period ranging from months to thousands or millions of years. The classical period is 30 years, as defined by the World Meteorological Organization (WMO). These quantities are most often surface variables such as temperature, precipitation, and wind. Climate in a wider sense is the state, including a statistical description, of the climate system."[11]

The World Meteorological Organization (WMO) describes "climate normals" as "reference points used by climatologists to compare current climatological trends to that of the past or what is considered typical. A climate normal is defined as the arithmetic average of a climate element (e.g. temperature) over a 30-year period. A 30-year period is used as it is long enough to filter out any interannual variation or anomalies such as El Niño–Southern Oscillation, but also short enough to be able to show longer climatic trends."[12]

The WMO originated from the International Meteorological Organization which set up a technical commission for climatology in 1929. At its 1934 Wiesbaden meeting, the technical commission designated the thirty-year period from 1901 to 1930 as the reference time frame for climatological standard normals. In 1982, the WMO agreed to update climate normals, and these were subsequently completed on the basis of climate data from 1 January 1961 to 31 December 1990.[13] The 1961–1990 climate normals serve as the baseline reference period. The next set of climate normals to be published by WMO is from 1991 to 2010.[14] Aside from collecting from the most common atmospheric variables (air temperature, pressure, precipitation and wind), other variables such as humidity, visibility, cloud amount, solar radiation, soil temperature, pan evaporation rate, days with thunder and days with hail are also collected to measure change in climate conditions.[15]

The difference between climate and weather is usefully summarized by the popular phrase "Climate is what you expect, weather is what you get."[16] Over historical time spans, there are a number of nearly constant variables that determine climate, including latitude, altitude, proportion of land to water, and proximity to oceans and mountains. All of these variables change only over periods of millions of years due to processes such as plate tectonics. Other climate determinants are more dynamic: the thermohaline circulation of the ocean leads to a 5 °C (41 °F) warming of the northern Atlantic Ocean compared to other ocean basins.[17] Other ocean currents redistribute heat between land and water on a more regional scale. The density and type of vegetation coverage affects solar heat absorption,[18] water retention, and rainfall on a regional level. Alterations in the quantity of atmospheric greenhouse gases (particularly carbon dioxide and methane determines the amount of solar energy retained by the planet, leading to global warming or global cooling. The variables which determine climate are numerous and the interactions complex, but there is general agreement that the broad outlines are understood, at least insofar as the determinants of historical climate change are concerned.[19][20]

Climate classification

Map of world dividing climate zones, largely influenced by latitude. The zones, going from the equator upward (and downward) are Tropical, Dry, Moderate, Continental and Polar. There are subzones within these zones.
Worldwide Köppen climate classifications

Climate classifications are systems that categorize the world's climates. A climate classification may correlate closely with a biome classification, as climate is a major influence on life in a region. One of the most used is the Köppen climate classification scheme first developed in 1899.[21]

There are several ways to classify climates into similar regimes. Originally, climes were defined in Ancient Greece to describe the weather depending upon a location's latitude. Modern climate classification methods can be broadly divided into genetic methods, which focus on the causes of climate, and empiric methods, which focus on the effects of climate. Examples of genetic classification include methods based on the relative frequency of different air mass types or locations within synoptic weather disturbances. Examples of empiric classifications include climate zones defined by plant hardiness,[22] evapotranspiration,[23] or more generally the Köppen climate classification which was originally designed to identify the climates associated with certain biomes. A common shortcoming of these classification schemes is that they produce distinct boundaries between the zones they define, rather than the gradual transition of climate properties more common in nature.

Record

Paleoclimatology

Paleoclimatology is the study of past climate over a great period of the Earth's history. It uses evidence with different time scales (from decades to millennia) from ice sheets, tree rings, sediments, pollen, coral, and rocks to determine the past state of the climate. It demonstrates periods of stability and periods of change and can indicate whether changes follow patterns such as regular cycles.[24]

Modern

Details of the modern climate record are known through the taking of measurements from such weather instruments as thermometers, barometers, and anemometers during the past few centuries. The instruments used to study weather over the modern time scale, their observation frequency, their known error, their immediate environment, and their exposure have changed over the years, which must be considered when studying the climate of centuries past.[25] Long-term modern climate records skew towards population centres and affluent countries.[26] Since the 1960s, the launch of satellites allow records to be gathered on a global scale, including areas with little to no human presence, such as the Arctic region and oceans.

Climate variability

Climate variability is the term to describe variations in the mean state and other characteristics of climate (such as chances or possibility of extreme weather, etc.) "on all spatial and temporal scales beyond that of individual weather events."[27] Some of the variability does not appear to be caused systematically and occurs at random times. Such variability is called random variability or noise. On the other hand, periodic variability occurs relatively regularly and in distinct modes of variability or climate patterns.[28]

There are close correlations between Earth's climate oscillations and astronomical factors (barycenter changes, solar variation, cosmic ray flux, cloud albedo feedback, Milankovic cycles), and modes of heat distribution between the ocean-atmosphere climate system. In some cases, current, historical and paleoclimatological natural oscillations may be masked by significant volcanic eruptions, impact events, irregularities in climate proxy data, positive feedback processes or anthropogenic emissions of substances such as greenhouse gases.[29]

Over the years, the definitions of climate variability and the related term climate change have shifted. While the term climate change now implies change that is both long-term and of human causation, in the 1960s the word climate change was used for what we now describe as climate variability, that is, climatic inconsistencies and anomalies.[28]

Climate change

Surface air temperature change over the past 50 years.[30]
Observed temperature from NASA[31] vs the 1850–1900 average used by the IPCC as a pre-industrial baseline.[32] The primary driver for increased global temperatures in the industrial era is human activity, with natural forces adding variability.[33]

Climate change is the variation in global or regional climates over time.[34] It reflects changes in the variability or average state of the atmosphere over time scales ranging from decades to millions of years. These changes can be caused by processes internal to the Earth, external forces (e.g. variations in sunlight intensity) or human activities, as found recently.[35][36] Scientists have identified Earth's Energy Imbalance (EEI) to be a fundamental metric of the status of global change.[37]

In recent usage, especially in the context of environmental policy, the term "climate change" often refers only to changes in modern climate, including the rise in average surface temperature known as global warming. In some cases, the term is also used with a presumption of human causation, as in the United Nations Framework Convention on Climate Change (UNFCCC). The UNFCCC uses "climate variability" for non-human caused variations.[38]

Earth has undergone periodic climate shifts in the past, including four major ice ages. These consist of glacial periods where conditions are colder than normal, separated by interglacial periods. The accumulation of snow and ice during a glacial period increases the surface albedo, reflecting more of the Sun's energy into space and maintaining a lower atmospheric temperature. Increases in greenhouse gases, such as by volcanic activity, can increase the global temperature and produce an interglacial period. Suggested causes of ice age periods include the positions of the continents, variations in the Earth's orbit, changes in the solar output, and volcanism.[39] However, these naturally caused changes in climate occur on a much slower time scale than the present rate of change which is caused by the emission of greenhouse gases by human activities.[40]

According to the EU's Copernicus Climate Change Service, average global air temperature has passed 1.5C of warming the period from February 2023 to January 2024.[41]

Climate models

Climate models use quantitative methods to simulate the interactions and transfer of radiative energy between the atmosphere,[42] oceans, land surface and ice through a series of physics equations. They are used for a variety of purposes, from the study of the dynamics of the weather and climate system to projections of future climate. All climate models balance, or very nearly balance, incoming energy as short wave (including visible) electromagnetic radiation to the Earth with outgoing energy as long wave (infrared) electromagnetic radiation from the Earth. Any imbalance results in a change in the average temperature of the Earth.

Climate models are available on different resolutions ranging from >100 km to 1 km. High resolutions in global climate models require significant computational resources, and so only a few global datasets exist. Global climate models can be dynamically or statistically downscaled to regional climate models to analyze impacts of climate change on a local scale. Examples are ICON[43] or mechanistically downscaled data such as CHELSA (Climatologies at high resolution for the earth's land surface areas).[44][45]

The most talked-about applications of these models in recent years have been their use to infer the consequences of increasing greenhouse gases in the atmosphere, primarily carbon dioxide (see greenhouse gas). These models predict an upward trend in the global mean surface temperature, with the most rapid increase in temperature being projected for the higher latitudes of the Northern Hemisphere.

Models can range from relatively simple to quite complex. Simple radiant heat transfer models treat the Earth as a single point and average outgoing energy. This can be expanded vertically (as in radiative-convective models), or horizontally. Finally, more complex (coupled) atmosphere–ocean–sea ice global climate models discretise and solve the full equations for mass and energy transfer and radiant exchange.[46]

See also

References

  1. ^ a b Matthews, J.B. Robin; Möller, Vincent; van Diemen, Renée; Fuglestvedt, Jan S.; Masson-Delmotte, Valérie; Méndez, Carlos; Semenov, Sergey; Reisinger, Andy (2021). "Annex VII. Glossary: IPCC – Intergovernmental Panel on Climate Change" (PDF). IPCC Sixth Assessment Report. p. 2222. Archived (PDF) from the original on 2022-06-05. Retrieved 2022-05-18.
  2. ^ Shepherd, J. Marshall; Shindell, Drew; O'Carroll, Cynthia M. (1 February 2005). "What's the Difference Between Weather and Climate?". NASA. Archived from the original on 22 September 2020. Retrieved 13 November 2015.
  3. ^ Gough, William A.; Leung, Andrew C. W. (2022). "Do Airports Have Their Own Climate?". Meteorology. 1 (2): 171–182. doi:10.3390/meteorology1020012. ISSN 2674-0494.
  4. ^ Thornthwaite, C. W. (1948). "An Approach Toward a Rational Classification of Climate" (PDF). Geographical Review. 38 (1): 55–94. doi:10.2307/210739. JSTOR 210739. Archived from the original (PDF) on Jan 24, 2012. Retrieved 2010-12-13.
  5. ^ "All About Climate". Education | National Geographic Society. Retrieved 2023-09-25.
  6. ^ "paleoclimatology | science". Britannica. Archived from the original on 2022-09-01. Retrieved 2022-09-01.
  7. ^ Hughes, Lesley (2000). Biological consequences of globalwarming: is the signal already. p. 56.
  8. ^ Hughes, Leslie (1 February 2000). "Biological consequences of global warming: is the signal already apparent?". Trends in Ecology and Evolution. 15 (2): 56–61. doi:10.1016/S0169-5347(99)01764-4. PMID 10652556. Archived from the original on 12 October 2013. Retrieved November 17, 2016.
  9. ^ "Climate". Glossary of Meteorology. American Meteorological Society. Archived from the original on 2011-07-07. Retrieved 2008-05-14.
  10. ^ "Climate averages". Met Office. Archived from the original on 2008-07-06. Retrieved 2008-05-17.
  11. ^ Intergovernmental Panel on Climate Change. Appendix I: Glossary. Archived 2017-01-26 at the Wayback Machine Retrieved on 2007-06-01.
  12. ^ "Climate Data and Data Related Products". World Meteorological Organization. Archived from the original on 1 October 2014. Retrieved 1 September 2015.
  13. ^ "Commission For Climatology: Over Eighty Years of Service" (PDF). World Meteorological Organization. 2011. pp. 6, 8, 10, 21, 26. Archived from the original (PDF) on 13 September 2015. Retrieved 1 September 2015.
  14. ^ "WMO Climatological Normals". World Meteorological Organization. Archived from the original on 2022-08-21. Retrieved 2022-08-21.
  15. ^ WMO Guidelines on the Calculation of Climate Normals (PDF). World Meteorological Organization. 2017. ISBN 978-92-63-11203-3. Archived from the original on 2022-08-08. Retrieved 2022-08-20.
  16. ^ National Weather Service Office Tucson, Arizona. Main page. Archived 2017-03-12 at the Wayback Machine Retrieved on 2007-06-01.
  17. ^ Rahmstorf, Stefan. "The Thermohaline Ocean Circulation: A Brief Fact Sheet". Potsdam Institute for Climate Impact Research. Archived from the original on 2013-03-27. Retrieved 2008-05-02.
  18. ^ de Werk, Gertjan; Mulder, Karel (2007). "Heat Absorption Cooling For Sustainable Air Conditioning of Households" (PDF). Sustainable Urban Areas Rotterdam. Archived from the original (PDF) on 2008-05-27. Retrieved 2008-05-02.
  19. ^ What Is Climate Change?
  20. ^ Ledley, T.S.; Sundquist, E. T.; Schwartz, S. E.; Hall, D. K.; Fellows, J. D.; Killeen, T. L. (1999). "Climate change and greenhouse gases". EOS. 80 (39): 453. Bibcode:1999EOSTr..80Q.453L. doi:10.1029/99EO00325. hdl:2060/19990109667.
  21. ^ Beck, Hylke E.; Zimmermann, Niklaus E.; McVicar, Tim R.; Vergopolan, Noemi; Berg, Alexis; Wood, Eric F. (30 October 2018). "Present and future Köppen-Geiger climate classification maps at 1-km resolution". Scientific Data. 5: 180214. Bibcode:2018NatSD...580214B. doi:10.1038/sdata.2018.214. ISSN 2052-4463. PMC 6207062. PMID 30375988.
  22. ^ United States National Arboretum. USDA Plant Hardiness Zone Map. Archived 2012-07-04 at the Wayback Machine Retrieved on 2008-03-09
  23. ^ "Thornthwaite Moisture Index". Glossary of Meteorology. American Meteorological Society. Retrieved 2008-05-21.
  24. ^ National Oceanic and Atmospheric Administration. NOAA Paleoclimatology. Archived 2020-09-22 at the Wayback Machine Retrieved on 2007-06-01.
  25. ^ Weart, Spencer. "The Modern Temperature Trend". American Institute of Physics. Archived from the original on 2020-09-22. Retrieved 2007-06-01.
  26. ^ Vose, R. S.; Schmoyer, R. L.; Steurer, P. M.; Peterson, T. C.; Heim, R.; Karl, T. R.; Eischeid, J. K. (1992-07-01). The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data. U.S. Department of Energy. Office of Scientific and Technical Information. doi:10.2172/10178730. OSTI 10178730.
  27. ^ IPCC AR5 WG1 Glossary 2013, p. 1451.
  28. ^ a b Rohli & Vega 2018, p. 274.
  29. ^ Scafetta, Nicola (May 15, 2010). "Empirical evidence for a celestial origin of the climate oscillations" (PDF). Journal of Atmospheric and Solar-Terrestrial Physics. 72 (13): 951–970. arXiv:1005.4639. Bibcode:2010JASTP..72..951S. doi:10.1016/j.jastp.2010.04.015. S2CID 1626621. Archived from the original (PDF) on 10 June 2010. Retrieved 20 July 2011.
  30. ^ "GISS Surface Temperature Analysis (v4)". NASA. Retrieved 12 January 2024.
  31. ^ "Global Annual Mean Surface Air Temperature Change". NASA. Archived from the original on 16 April 2020. Retrieved 23 February 2020..
  32. ^ IPCC AR5 SYR Glossary 2014, p. 124.
  33. ^ USGCRP Chapter 3 2017 Figure 3.1 panel 2 Archived 2018-04-09 at the Wayback Machine, Figure 3.3 panel 5 Archived 2018-04-09 at the Wayback Machine.
  34. ^ "Climate Change | National Geographic Society". Education | National Geographic Society. Archived from the original on 2022-07-30. Retrieved 2022-06-28.
  35. ^ Arctic Climatology and Meteorology. Climate change. Archived 2010-01-18 at the Wayback Machine Retrieved on 2008-05-19.
  36. ^ Gillis, Justin (28 November 2015). "Short Answers to Hard Questions About Climate Change". The New York Times. Archived from the original on 22 September 2020. Retrieved 29 November 2015.
  37. ^ von Schuckman, K.; Palmer, M. D.; Trenberth, K. E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S. A.; Loeb, N; Mathieu, P. P.; Meyssignac, B.; Wild, N. (27 January 2016). "An imperative to monitor Earth's energy imbalance". Nature Climate Change. 6 (2): 138–144. Bibcode:2016NatCC...6..138V. doi:10.1038/NCLIMATE2876.
  38. ^ "Glossary". Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. 2001-01-20. Archived from the original on 2017-01-26. Retrieved 2008-05-22.
  39. ^ Illinois State Museum (2002). Ice Ages. Archived 2010-03-26 at the Wayback Machine Retrieved on 2007-05-15.
  40. ^ Joos, Fortunat; Spahni, Renato (2008-02-05). "Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years". Proceedings of the National Academy of Sciences. 105 (5): 1425–1430. Bibcode:2008PNAS..105.1425J. doi:10.1073/pnas.0707386105. ISSN 0027-8424. PMC 2234160. PMID 18252830.
  41. ^ "World's first year-long breach of key 1.5C warming limit". 2024-02-08. Retrieved 2024-02-10.
  42. ^ Eric Maisonnave. Climate Variability. Retrieved on 2008-05-02. Archived June 10, 2008, at the Wayback Machine
  43. ^ Dipankar, A.; Heinze, Rieke; Moseley, Christopher; Stevens, Bjorn; Zängl, Günther; Brdar, Slavko (2015). "A Large Eddy Simulation Version of ICON (ICOsahedral Nonhydrostatic): Model Description and Validation". Journal of Advances in Modeling Earth Systems. 7. doi:10.1002/2015MS000431. hdl:11858/00-001M-0000-0024-9A35-F. S2CID 56394756.
  44. ^ Karger, D.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, P.; Kessler, M. (2017). "Climatologies at high resolution for the Earth land surface areas". Scientific Data. 4 (4 170122): 170122. Bibcode:2017NatSD...470122K. doi:10.1038/sdata.2017.122. PMC 5584396. PMID 28872642. S2CID 3750792.
  45. ^ Karger, D.N.; Lange, S.; Hari, C.; Reyer, C.P.O.; Zimmermann, N.E. (2021). "CHELSA-W5E5 v1.0: W5E5 v1.0 downscaled with CHELSA v2.0". ISIMIP Repository. doi:10.48364/ISIMIP.836809.
  46. ^ Climateprediction.net. Modelling the climate. Archived 2009-02-04 at the Wayback Machine Retrieved on 2008-05-02.

Sources

Further reading

External links

Listen to this article (18 minutes)
Spoken Wikipedia icon
This audio file was created from a revision of this article dated 18 May 2023 (2023-05-18), and does not reflect subsequent edits.
Baca informasi lainnya:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Gerhard OlschewskiLahir30 Mei 1942 (umur 81)Herzogskirchen, Prusia Timur, Jerman(kini Gąski, Polandia)PekerjaanPemeranTahun aktif1966–kini Gerhard Olschewski (lahir 30 Mei 1942) adalah seorang pemeran asal Jerman. Ia tampil dalam 94 film dan…

Simulasi gerakan piston Simulasi dinamis dalam bidang fisika komputasi adalah simulasi sistem objek/benda yang bebas bergerak secara tiga dimensi mengikuti dasar-dasar hukum dinamika Newton. Simulasi dinamis (atau simulasi sistem dinamis) ini menggunakan program komputer untuk memodelkan perilaku suatu benda yang bervariasi secara waktu berdasarkan pada sifat dari suatu sistem dinamis. Sifat dinamis sering dinyatakan dalam bentuk persamaan diferensial dan persamaan diferensial parsial yang dapat…

Sumsum tulang belakang. Sumsum tulang belakang adalah saraf yang tipis yang merupakan perpanjangan dari sistem saraf pusat dari otak dan melengkungi serta dilindungi oleh tulang belakang. Fungsi utama sumsum tulang belakang adalah transmisi pemasukan rangsangan antara periferi dan otak. Fungsi lain sumsum tulang belakang adalah mengontrol gerakan refleks, termasuk gerakan reflek pada mata, hidung, dan lain-lain. Lihat pula Sumsum tulang Pranala luar Spinal Cord Histology Diarsipkan 2006-09-10 di…

Kento YamazakiNama asal山﨑 賢人Lahir07 September 1994 (umur 29)Itabashi, Tokyo, JepangPekerjaanAktor, ModelTahun aktif2009-sekarangTinggi178 cm (5 ft 10 in) Kento Yamazaki (Kanji: 山﨑 賢人; Romaji: Yamazaki Kento, lahir 7 September 1994) adalah seorang aktor dan model berkebangsaan Jepang.[1][2] Ia debut pada 2010 dan berada di bawah agensi Stardust Promotion. Sejarah Kento Yamazaki direkrut ketika ia berada di kelas 3 SMP, bekerja sebagai …

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Senator Pettus beralih ke halaman ini. Untuk kegunaan lain, lihat Senator Pettus (disambiguasi). Edmund Pettus Senator Amerika Serikat dari AlabamaMasa jabatan4 Maret 1897 – 27 Juli 1907 PendahuluJames L. PughPenggantiJoseph F. Johnston Inform…

Afuega'l pituNegara asalSpanyolSumber susuSapiDipasteurisasiTidakSertifikasiTidak[1] Afuega'l pitu adalah keju Spanyol dari susu sapi yang tidak dipasteurisasi lebih dahulu.[1] Nama dari keju ini memiliki arti api dalam perut.[1] Hal ini dikarenakan cabai merah segar ditambahkan ke dalam keju ini dan digosokkan pada kulit keju saat dilakukan pematangan.[1] Untuk mengatasi rasa pedas tersebut, keju ini diminum bersama dengan anggur Leon.[1] Walaupun begitu,…

Demokrat BourbonKartun tahun 1884 yang mengilustrasikan penurunan Bourbonisme Demokrat (diwakili oleh kendi kosong) karya Joseph KepplerDinamai berdasarkanWhiskey atau Ningrat PrancisTanggal pendirian1872 (1872)TipeFaksi politikTokoh pentingCharles O'ConorGeorge B. McClellanSamuel J. TildenGrover ClevelandJohn M. PalmerAlton B. ParkerWoodrow WilsonOrganisasi indukPartai Demokrat Demokrat Bourbon adalah sebuah istilah yang dipakai di Amerika Serikat pada akhir abad ke-19 (1872–1904) untuk …

BalşKotaNegara RumaniaProvinsiOltPemerintahan • Wali kotaVitalie StaicuLuas • Total37 km2 (14 sq mi)Populasi (2002) • Total21.195Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST)Situs webhttp://www.bals.ro/ Balş adalah kota yang terletak di provinsi Olt, Rumania. Populasi 1864 - 1.700 1884 - 2.500 1921 - 5.000 1938 - 5.300 1948 - 6.128 1973 - 11.578 1992 - 24.560 2002 - 21.195 Komposisi penduduk menurut kebangsaan: * …

John Carew Carew bersama Aston Villa pada 2008Informasi pribadiNama lengkap John Alieu CarewTanggal lahir 5 September 1979 (umur 44)Tempat lahir Lørenskog, NorwegiaTinggi 1,96 m (6 ft 5 in)Posisi bermain PenyerangKarier junior1995–1998 LørenskogKarier senior*Tahun Tim Tampil (Gol)1998–1999 Vålerenga 43 (19)1999–2000 Rosenborg 17 (19)2000–2004 Valencia 84 (20)2003–2004 → Roma (pinjaman) 20 (6)2004–2005 Beşiktaş 24 (13)2005–2007 Lyon 35 (9)2007–2011 Aston…

Basilika Santo AndreasBasilika Minor Santo Andreas Rasulbahasa Slowakia: Bazilika svätého OndrejaBasilika Santo AndreasLokasiKomárnoNegara SlowakiaDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktif Basilika Santo Andreas (bahasa Slowakia: Bazilika svätého Ondreja) adalah sebuah gereja basilika minor Katolik yang terletak di Komárno, Slowakia. Basilika ini ditetapkan statusnya pada 2017 dan didedikasikan kepada Santo Andreas.[1] Lihat juga…

Island country in East Asia For other uses, see Japan (disambiguation). Nippon, Nihon, and JPN redirect here. For other uses, see Nippon (disambiguation), Nihon (disambiguation), and JPN (disambiguation). Japan日本国 (Japanese)Nippon-koku or Nihon-koku Flag Imperial Seal Anthem: 君が代 (Kimigayo)His Imperial Majesty's ReignState Seal:大日本國璽 (Dai Nihon Kokuji)National Seal of Greater Japan  Location of Japan   Territory claimed but not controlledCapita…

British financial service company Hargreaves Lansdown plcCompany typePublic limited companyTraded asLSE: HL.FTSE 250 ComponentIndustryFinancial servicesFounded1 July 1981; 42 years ago (1 July 1981)HeadquartersBristol, England, UKKey peopleAlison Platt (chair­person) ProductsISA, SIPP, Annuities, Income drawdownRevenue £735.1 million (2023)[1]Operating income £384.4 million (2023)[1]Net income £323.7 million (2023)[1]Total…

Untuk musisi, lihat Frankie Lee (musisi). Untuk penulis lagu, lihat Frankie Lee (musisi Americana). Frankie LeeLee pada 1923Lahir(1911-12-31)31 Desember 1911Gunnison, Colorado, Amerika SerikatMeninggal29 Juli 1970(1970-07-29) (umur 58)Los Angeles, California, Amerika SerikatSebab meninggalLuka tembakPekerjaanPemeranTahun aktif1916–1925 Frankie Lee (31 Desember 1911 – 29 Juli 1970), adalah seorang pemeran cilik Amerika Serikat. Ia tampil dalam 56 film antara 1916 …

The WhirlwindThe title illustration of the first issue of The WhirlwindTypeWeekly newspaperOwner(s)Herbert Vivian, Ruaraidh ErskineEditorHerbert VivianFounded28 June 1890; 133 years ago (1890-06-28)CountryUnited KingdomMedia of the United KingdomList of newspapers The Whirlwind was a short-lived British newspaper, published in 1890 and 1891. It was known for its Individualist political views and its artwork by Walter Sickert and James Abbott McNeill Whistler. It was also strong…

State historic park in Los Angeles County, California, United States Los Angeles State Historic ParkAn aerial viewShow map of CaliforniaShow map of the United StatesLocationLos Angeles County, CaliforniaNearest cityLos Angeles, CaliforniaCoordinates34°3′58″N 118°14′4″W / 34.06611°N 118.23444°W / 34.06611; -118.23444Area32 acres (13 ha)Established2001Governing bodyCalifornia Department of Parks and Recreation Los Angeles State Historic Park, also…

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Jean Bédel Bokassa – berita · surat kabar · buku · cendekiawan · JSTOR (December 2010) Jean-Bédel BokassaKaisar Afrika TengahBerkuasa4 Desember 1976 - 20 September 1979 (2 tahun, 290 hari)Penobatan4 …

AmebaURLwww.ameba.jpTipelayanan jejaring sosial Perdagangan ?YaRegistration (en)YaLangueJepang (Platform blogging, Komunitas Maya, Permainan Sosial)PemilikCyberAgent PembuatSusumu Fujita Service entry (en)15 September 2004; 19 tahun lalu (2004-09-15)Lokasi kantor pusatPrefektur Tokyo Peringkat AlexaGlobal: 139, Jepang: 9[1]KeadaanAktif (Mobile browser Pigg)Aktif (Pigg Party mobile app)Aktif (Pigg Life mobile app)Ditutup (Pigg PC Version)Ditutup (Pico) Ameba (アメーバcode: j…

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gorzów Voivodeship – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Gorzów Voivodeship Gorzów Voivodeship (Polish: województwo gorzowskie) was a unit of administrative division[clarification needed] and l…

Defunct American department store chain Mervyn's LLCThe Mervyn's logo used from 2004 until the closureCompany typePrivateIndustryRetailFoundedJuly 29, 1949; 74 years ago (1949-07-29)San Lorenzo, California, U.S.FounderMervin G. MorrisDefunctJanuary 1, 2009; 15 years ago (2009-01-01)FateChapter 7 bankruptcyLiquidation saleHeadquartersHayward, California, U.S.Area servedWestern United StatesKey peopleJohn Goodman (CEO, 2008)ProductsClothing, footwear, jewelry, b…

Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Afrika Selatan Sud…

Kembali kehalaman sebelumnya