Share to: share facebook share twitter share wa share telegram print page

Multiplicative inverse

Graph showing the diagrammatic representation of limits approaching infinity
The reciprocal function: y = 1/x. For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.

In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).

Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1).

The term reciprocal was in common use at least as far back as the third edition of Encyclopædia Britannica (1797) to describe two numbers whose product is 1; geometrical quantities in inverse proportion are described as reciprocall in a 1570 translation of Euclid's Elements.[1]

In the phrase multiplicative inverse, the qualifier multiplicative is often omitted and then tacitly understood (in contrast to the additive inverse). Multiplicative inverses can be defined over many mathematical domains as well as numbers. In these cases it can happen that abba; then "inverse" typically implies that an element is both a left and right inverse.

The notation f −1 is sometimes also used for the inverse function of the function f, which is for most functions not equal to the multiplicative inverse. For example, the multiplicative inverse 1/(sin x) = (sin x)−1 is the cosecant of x, and not the inverse sine of x denoted by sin−1 x or arcsin x. The terminology difference reciprocal versus inverse is not sufficient to make this distinction, since many authors prefer the opposite naming convention, probably for historical reasons (for example in French, the inverse function is preferably called the bijection réciproque).

Examples and counterexamples

In the real numbers, zero does not have a reciprocal (division by zero is undefined) because no real number multiplied by 0 produces 1 (the product of any number with zero is zero). With the exception of zero, reciprocals of every real number are real, reciprocals of every rational number are rational, and reciprocals of every complex number are complex. The property that every element other than zero has a multiplicative inverse is part of the definition of a field, of which these are all examples. On the other hand, no integer other than 1 and −1 has an integer reciprocal, and so the integers are not a field.

In modular arithmetic, the modular multiplicative inverse of a is also defined: it is the number x such that ax ≡ 1 (mod n). This multiplicative inverse exists if and only if a and n are coprime. For example, the inverse of 3 modulo 11 is 4 because 4 ⋅ 3 ≡ 1 (mod 11). The extended Euclidean algorithm may be used to compute it.

The sedenions are an algebra in which every nonzero element has a multiplicative inverse, but which nonetheless has divisors of zero, that is, nonzero elements x, y such that xy = 0.

A square matrix has an inverse if and only if its determinant has an inverse in the coefficient ring. The linear map that has the matrix A−1 with respect to some base is then the inverse function of the map having A as matrix in the same base. Thus, the two distinct notions of the inverse of a function are strongly related in this case, but they still do not coincide, since the multiplicative inverse of Ax would be (Ax)−1, not A−1x.

These two notions of an inverse function do sometimes coincide, for example for the function where is the principal branch of the complex logarithm and :

.

The trigonometric functions are related by the reciprocal identity: the cotangent is the reciprocal of the tangent; the secant is the reciprocal of the cosine; the cosecant is the reciprocal of the sine.

A ring in which every nonzero element has a multiplicative inverse is a division ring; likewise an algebra in which this holds is a division algebra.

Complex numbers

As mentioned above, the reciprocal of every nonzero complex number is complex. It can be found by multiplying both top and bottom of 1/z by its complex conjugate and using the property that , the absolute value of z squared, which is the real number a2 + b2:

The intuition is that

gives us the complex conjugate with a magnitude reduced to a value of , so dividing again by ensures that the magnitude is now equal to the reciprocal of the original magnitude as well, hence:

In particular, if ||z||=1 (z has unit magnitude), then . Consequently, the imaginary units, ±i, have additive inverse equal to multiplicative inverse, and are the only complex numbers with this property. For example, additive and multiplicative inverses of i are −(i) = −i and 1/i = −i, respectively.

For a complex number in polar form z = r(cos φ + i sin φ), the reciprocal simply takes the reciprocal of the magnitude and the negative of the angle:

Geometric intuition for the integral of 1/x. The three integrals from 1 to 2, from 2 to 4, and from 4 to 8 are all equal. Each region is the previous region halved vertically and doubled horizontally. Extending this, the integral from 1 to 2k is k times the integral from 1 to 2, just as ln 2k = k ln 2.

Calculus

In real calculus, the derivative of 1/x = x−1 is given by the power rule with the power −1:

The power rule for integrals (Cavalieri's quadrature formula) cannot be used to compute the integral of 1/x, because doing so would result in division by 0: Instead the integral is given by: where ln is the natural logarithm. To show this, note that , so if and , we have:[2]

Algorithms

The reciprocal may be computed by hand with the use of long division.

Computing the reciprocal is important in many division algorithms, since the quotient a/b can be computed by first computing 1/b and then multiplying it by a. Noting that has a zero at x = 1/b, Newton's method can find that zero, starting with a guess and iterating using the rule:

This continues until the desired precision is reached. For example, suppose we wish to compute 1/17 ≈ 0.0588 with 3 digits of precision. Taking x0 = 0.1, the following sequence is produced:

x1 = 0.1(2 − 17 × 0.1) = 0.03
x2 = 0.03(2 − 17 × 0.03) = 0.0447
x3 = 0.0447(2 − 17 × 0.0447) ≈ 0.0554
x4 = 0.0554(2 − 17 × 0.0554) ≈ 0.0586
x5 = 0.0586(2 − 17 × 0.0586) ≈ 0.0588

A typical initial guess can be found by rounding b to a nearby power of 2, then using bit shifts to compute its reciprocal.

In constructive mathematics, for a real number x to have a reciprocal, it is not sufficient that x ≠ 0. There must instead be given a rational number r such that 0 < r < |x|. In terms of the approximation algorithm described above, this is needed to prove that the change in y will eventually become arbitrarily small.

Graph of f(x) = xx showing the minimum at (1/e, e−1/e).

This iteration can also be generalized to a wider sort of inverses; for example, matrix inverses.

Reciprocals of irrational numbers

Every real or complex number excluding zero has a reciprocal, and reciprocals of certain irrational numbers can have important special properties. Examples include the reciprocal of e (≈ 0.367879) and the golden ratio's reciprocal (≈ 0.618034). The first reciprocal is special because no other positive number can produce a lower number when put to the power of itself; is the global minimum of . The second number is the only positive number that is equal to its reciprocal plus one:. Its additive inverse is the only negative number that is equal to its reciprocal minus one:.

The function gives an infinite number of irrational numbers that differ with their reciprocal by an integer. For example, is the irrational . Its reciprocal is , exactly less. Such irrational numbers share an evident property: they have the same fractional part as their reciprocal, since these numbers differ by an integer.

The reciprocal function plays an important role in continued fractions, which have a number of remarkable properties relating to the representation of (both rational and) irrational numbers.

Further remarks

If the multiplication is associative, an element x with a multiplicative inverse cannot be a zero divisor (x is a zero divisor if some nonzero y, xy = 0). To see this, it is sufficient to multiply the equation xy = 0 by the inverse of x (on the left), and then simplify using associativity. In the absence of associativity, the sedenions provide a counterexample.

The converse does not hold: an element which is not a zero divisor is not guaranteed to have a multiplicative inverse. Within Z, all integers except −1, 0, 1 provide examples; they are not zero divisors nor do they have inverses in Z. If the ring or algebra is finite, however, then all elements a which are not zero divisors do have a (left and right) inverse. For, first observe that the map f(x) = ax must be injective: f(x) = f(y) implies x = y:

Distinct elements map to distinct elements, so the image consists of the same finite number of elements, and the map is necessarily surjective. Specifically, ƒ (namely multiplication by a) must map some element x to 1, ax = 1, so that x is an inverse for a.

Applications

The expansion of the reciprocal 1/q in any base can also act[3] as a source of pseudo-random numbers, if q is a "suitable" safe prime, a prime of the form 2p + 1 where p is also a prime. A sequence of pseudo-random numbers of length q − 1 will be produced by the expansion.

See also

Notes

  1. ^ "In equall Parallelipipedons the bases are reciprokall to their altitudes". OED "Reciprocal" §3a. Sir Henry Billingsley translation of Elements XI, 34.
  2. ^ Anthony, Dr. "Proof that INT(1/x)dx = lnx". Ask Dr. Math. Drexel University. Retrieved 22 March 2013.
  3. ^ Mitchell, Douglas W., "A nonlinear random number generator with known, long cycle length", Cryptologia 17, January 1993, 55–62.

References

  • Maximally Periodic Reciprocals, Matthews R.A.J. Bulletin of the Institute of Mathematics and its Applications vol 28 pp 147–148 1992
Baca informasi lainnya:

List of counties of the U.S. State of Colorado by per capita income This article is part of a series onIncome in theUnited States of America Topics Household Personal Affluence Social class Income inequality gender pay gap racial pay gap Lists by income States (by inequality) Counties (highest / lowest) Locations (lowest) Metropolitan statistical areas Urban areas ZIP Code Tabulation Areas Ethnic groups  United States portalvte Colorado is the fifth-richest state in the United Stat…

Environmental management paradigm focusing on entire ecosystems Ecosystem-based management is an environmental management approach that recognizes the full array of interactions within an ecosystem, including humans, rather than considering single issues, species, or ecosystem services in isolation.[1] It can be applied to studies in the terrestrial and aquatic environments with challenges being attributed to both. In the marine realm, they are highly challenging to quantify due to highl…

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut). …

Nothing SeriousPoster rilis resmiNama lainHangul연애 빠진 로맨스 Alih Aksara yang DisempurnakanYeonae Ppajin Romaenseu SutradaraJeong Ga-youngProduserLee Jaemin Im Eun-jeongDitulis olehJeong Ga-youngPemeranJeon Jong-seo Son Seok-gu Gong Min-jungPerusahaanproduksiCJ ENM Twelve JourneyDistributorCJ ENMTanggal rilis 24 November 2021 (2021-11-24) Durasi95 menitNegaraKorea SelatanBahasaKoreaPendapatankotorTemplat:Estimated US$717,138[1] Nothing Serious (Hangul: 연…

Contoh avatar, dengan resolusi 100 × 100 piksel Dalam komputasi, sebuah avatar atau dikenal juga gambar profil (bahasa Inggris: avatar, userpic) adalah representasi grafis dari pengguna atau karakter atau persona pengguna. Ini dapat mengambil bentuk dua dimensi sebagai ikon di forum Internet dan komunitas online lainnya[1][2] atau bentuk tiga dimensi,[3] seperti dalam permainan atau dunia virtual. Gambar avatar juga disebut sebagai picons (personal icons)[4] …

Bapa-bapa Kapadokia Bapa-bapa Kapadokia terdiri dari tiga orang yaitu Basilius dari Kaisarea, sahabatnya Gregorius dari Nazianzus dan adiknya, Gregorius dari Nyssa.[1] Ketiganya berasal dari provinsi Romawi, Kapadokia yang sekarang letaknya di wilayah Turki.[1] Mereka bertiga punya cita-cita bersama untuk mengintegrasikan segala yang baik dari kebudayaan klasik ke dalam agama Kristen.[1] Mereka menjadi terkenal setelah memberikan perlawanan keras untuk menentang Arianisme…

Gillian ArmstrongArmstrong at the AACTA awards 2012, SydneyLahirGillian May Armstrong18 Desember 1950 (umur 73)Melbourne, Victoria, AustraliaPekerjaanSutradaraTahun aktif1970–sekarangSuami/istriJohn PlefferAnak2PenghargaanAustralian Film Institute Award for Best Direction1979 My Brilliant Career Gillian May Armstrong (lahir 18 Desember 1950) adalah sutradara film Australia.[1] Ia dikenal karena karyanya yang bercerita dari perspektif dari karakter wanita dalam filmnya. Karyan…

Domenico SelvoDoge VenesiaLambang Domenico SelvoBerkuasa1071–1084PendahuluDomenico I ContariniPenerusVitale FalieroKelahiranTidak diketahuiKematian1087IstriTeodora Selvo Domenico Selvo (kematian 1087) adalah Doge Venesia ke-31 yang menjabat dari tahun 1071 hingga 1084. Pada masa kekuasaannya sebagai Doge, kebijakan-kebijakan domestiknya, persekutuan yang ia bentuk dan pertempuran yang dihadapinya membentuk landasan kebijakan dalam dan luar negeri Republik Venesia ke depannya. Ia menghindari ko…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Silencer film – news · newspapers · books · scholar · JSTOR (March 2019) (Learn how and when to remove this template message) 2000 filmThe SilencerDirected byRobert LeeWritten byJohn CurtisProduced byEvan TylorJohn CurtisMelanie Kilgour (associate produce…

Peta infrastruktur dan tata guna lahan di Komune Aroffe.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiAroffe merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuvelle An…

Patson Daka Daka, 2019Informasi pribadiNama lengkap Patson Daka[1]Tanggal lahir 9 Oktober 1998 (umur 25)Tempat lahir Kafue, ZambiaTinggi 185 m (606 ft 11 in)Posisi bermain ForwardInformasi klubKlub saat ini Leicester CityNomor 29Karier junior2007–2014 Kafue CelticKarier senior*Tahun Tim Tampil (Gol)2014–2017 Kafue Celtic 2014–2015 → Nchanga Rangers (pinjaman) 2015–2016 → Power Dynamos (pinjaman) (12)2017 → Liefering (pinjaman) 9 (2)2017 Liefering 18 (4)2…

Disambiguazione – Se stai cercando il videogioco, vedi WWE Raw (videogioco). Questa voce o sezione sull'argomento televisione è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerime…

Halaman ini berisi artikel tentang seni rupa yang dipraktikan di jalanan. Untuk seni pertunjukan yang dipraktikan di jalanan, lihat Penampilan jalanan. Untuk teater jalanan, lihat Teater jalanan. John Fekner: Broken Promises/Falsas Promesas, South Bronx, USA, 1980. Seni jalanan awal karya Jacek Tylicki, Lower East Side, New York, AS, 1982. Seni jalanan karya Kevin Larmee SoHo, New York, AS, 1985. Seni jalanan di Penang, Malaysia Seni jalanan adalah seni rupa yang dibuat di tempat-tempat publik, …

Hon’ble SirFazal Ali Hakim Pengadilan Tinggi IndiaMasa jabatan15 Oktober 1951 – 30 Mei 1952Ditunjuk olehPresidenKetua Hakim Pengadilan Tinggi PatnatMasa jabatan19 Januari 1943 – 14 Oktober 1946 Informasi pribadiLahir19 September 1886Meninggal22 Agustus 1959(1959-08-22) (umur 72)Orang tuaSaiyid Nazir Ali (ayah) Kubra Begum(ibu)Sunting kotak info • L • B Khan Bahadur Sayyid Sir Fazl Ali, juga dikenal sebagai Fazal Ali OBE (19 September 1886 –&#…

Untuk perusahaan dari merek tersebut, lihat Vitasoy.VitaJenisMinuman, makananProdusenVitasoyNegara asalHong KongDiperkenalkan1976Situs webwww.vitavitasoy.com Vita (Hanzi: 維他) adalah sebuah nama merek dari berbagai jenis minuman dan makanan yang diproduksi oleh perusahaan minuman yang berbasis di Hong Kong Vitasoy.[1] Mula-mula diperkenalkan pada 1976 sebagai serangkaian minuman rasa buah berbeda, merek tersebut kemudian diperluas menjadi meliputi minuman teh lemon siap saji perta…

Fictional giant spider from The Lord of the Rings For the song Shelob's Lair, see Music of The Lord of the Rings film series. Fictional character ShelobTolkien characterIn-universe informationRaceSpiderBook(s)The Two Towers (1954)Film(s)The Return of the King (2003) Shelob is a fictional monster in the form of a giant spider from J. R. R. Tolkien's The Lord of the Rings. Her lair lies in Cirith Ungol (the pass of the spider) leading into Mordor. The creature Gollum deliberately leads the Hobbit …

Suet puddingJenisPuddingBahan utamaWheat flour and SuetVariasiSpotted dick, Christmas pudding, Treacle pudding, Clootie, Jam Roly-Poly, Paignton, Sussex pond puddingSunting kotak info • L • BBantuan penggunaan templat ini Puding suet adalah puding yang direbus, dikukus, atau dipanggang yang dibuat dengan tepung terigu dan lemak (lemak daging sapi atau kambing mentah dan keras yang ditemukan di sekitar ginjal), sering kali dengan remah roti, buah-buahan kering seperti kismis, buah-b…

Miss Earth 2022Tanggal29 November 2022Tempat Cove Manila Okada, Parañaque, Metro Manila, FilipinaTemaME Loves FaunaPeserta86Finalis/Semifinalis20DebutBurundiCabo VerdeSenegalTidak tampilAngolaArmeniaBangladeshBotswanaDenmarkGambiaGuadeloupeGuatemalaItaliaKambojaKenyaKrimeaLatviaLebanonMyanmarParaguayRwandaSyriaSwediaUkrainaTampil kembaliAlbaniaEkuadorEthiopiaHaitiHong KongIrakKoreaKosovoMaltaMongoliaNamibiaPakistanPalestinaPolandiaRepublik SlowakiaRumaniaSkotlandiaSudan SelatanWalesZa…

TechnoroidPoster animeテクノロイド(Tekunoroido)GenreIdola, MusikPenciptaNoriyasu AgematsuRUCCA CyberAgent Avex Pictures Elements Garden PermainanTechnoroid Unison HeartPengembangWonderPlanetPenerbitCyberAgentMusikElements GardenGenrePermainan video Puzzle PetualanganPlatformAndroid, iOSRilisJP: 21 Januari 2022 Seri animeTechnoroid OvermindSutradaraKa Hee Im (イムカヒ)ProduserHiroyuki Tanaka (田中宏幸) (CyberAgent) Koji Oogo (大胡寬二) (Avex Pictures) Yuzuru Saito (齋藤譲) (T…

Vijender SinghVijender di penghargaan SaharaStatistikNama asliVijender Singh BeniwalDinilai padaSuper-middleweightTinggi6 kaki 0 inKebangsaanIndiaLahir29 Oktober 1985 (umur 38)Desa Kaluwas, distrik Bhiwani, Haryana, IndiaCatatan tinjuTotal perkelahian7Menang7Menang oleh KO6Kalah0 Rekam medali Tinju amatir putra Mewakili  India Permainan Olimpiade 2008 Beijing Middleweight Kejuaraan Dunia 2009 Milan Middleweight Commonwealth Games 2006 Melbourne Welterweight 2014 Glasgow Middleweight 20…

Kembali kehalaman sebelumnya