Bers-SchnittIn der Mathematik sind Bers-Schnitte (engl. Bers slices) die Bilder gewisser Einbettungen des Teichmüller-Raums in den Raum der quasifuchsschen Gruppen. Sie haben oft eine fraktale Gestalt. Bers-Schnitte und die mit ihrer Hilfe definierte skinning map spielen eine Rolle in vielen Beweisen der niedrig-dimensionalen Geometrie, zum Beispiel in Thurstons Beweis der Geometrisierung von Haken-Mannigfaltigkeiten. KonstruktionSei eine geschlossene Fläche und die zugehörige Flächengruppe. Man bezeichnet mit den Teichmüller-Raum von und mit den Raum aller derjenigen Homomorphismen , deren Bild eine quasifuchssche Gruppe ist. Simultane Uniformisierung gibt eine Bijektion
Für ein fixiertes heißt dann die entsprechende Teilmenge von der (zu gehörende) Bers-Schnitt. Bers-KompaktifizierungMittels der Einbettung von in den Modulraum der markierten hyperbolischen Mannigfaltigkeiten homotopieäquivalent zu kann man den Bers-Schnitt in diesen Modulraum einbetten. Sein Bild ist relativ kompakt, seine Kompaktifizierung heißt Bers-Kompaktifizierung des Teichmüller-Raums. Kerckhoff und Thurston haben bewiesen, dass die Wirkung der Abbildungsklassengruppe auf der Bers-Kompaktifizierung des Teichmüller-Raums nicht stetig ist. Insbesondere stimmt die Bers-Kompaktifizierung nicht mit Thurstons Kompaktifizierung des Teichmüller-Raums überein. Skinning mapFür eine geometrisch endliche hyperbolische 3-Mannigfaltigkeit gibt ihr konformer Rand einen Punkt im Teichmüller-Raum . Andererseits ist das Bild von eine quasifuchssche Gruppe und gibt somit einen Punkt in . Die so definierte Abbildung ist auf der ersten Komponente die Identitätsabbildung, ist also von der Form
Die Abbildung heißt skinning map. Thurstons Bounded Image Theorem besagt, dass das Bild der skinning map endlichen Durchmesser hat. Es ist ein wesentlicher Schritt beim Beweis der Hyperbolisierung von Haken-Mannigfaltigkeiten. Literatur
Information related to Bers-Schnitt |