In der Zahlentheorie ist eine Higgs-Primzahl für die Potenz a eine Primzahl , bei der die -te Potenz des Produkts aller kleineren Higgs-Primzahlen teilt.
Algebraisch bedeutet das bei gegebener Potenz , dass die Higgs-Primzahl folgende Bedingung erfüllt:
![{\displaystyle \varphi (Hp_{n})=Hp_{n}-1{\mbox{ teilt }}\prod _{i=1}^{n-1}{Hp_{i}}^{a}{\mbox{ mit }}Hp_{n}>Hp_{n-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e97132d68a1aab8151c47a902a34edd6fa18394b)
wobei die Eulersche Phi-Funktion ist (sie gibt für jede natürliche Zahl an, wie viele zu teilerfremde natürliche Zahlen es gibt, die nicht größer als sind; bei Primzahlen ist ).
Die Higgs-Primzahlen wurden nach dem britischen Mathematiker Denis Higgs benannt.
Beispiele
- Die ersten Higgs-Primzahlen für die Potenz
(also für Quadrate) sind die folgenden:
- 2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349, 367, 373, 383, 397, 419, 421, 431, 461, 463, 491, 509, 523, 547, 557, 571, … (Folge A007459 in OEIS)
- Die Zahl
ist eine Higgs-Primzahl für die Potenz , weil das Quadrat des Produkts der kleineren Higgs-Primzahlen, also die Zahl als Teiler hat (es ist ).
- Die Zahl
ist keine Higgs-Primzahl für die Potenz : das Quadrat des Produkts der kleineren Higgs-Primzahlen, also hat die Zahl nicht als Teiler (es bleibt Rest).
- Die Zahl
ist eine Higgs-Primzahl für die Potenz , weil die -te Potenz des Produkts der kleineren Higgs-Primzahlen, also die Zahl als Teiler hat (es ist ).
- Bei höheren Potenzen
sind immer mehr Primzahlen auch gleichzeitig Higgs-Primzahlen, sodass es sinnvoll erscheint, diejenigen Primzahlen anzugeben, welche nicht gleichzeitig Higgs-Primzahlen sind. Die folgende Tabelle gibt diese „Nicht-Higgs-Primzahlen“ bei gegebener Potenz bis zur 100. Higgs-Primzahl zur jeweiligen Potenz an:
Exponent
|
100. Higgs- Primzahl
|
keine Higgs-Primzahlen für die Potenz bis zur 100. Higgs-Primzahl dieser Potenz
|
2 |
1117 |
17, 41, 73, 83, 89, 97, 103, 109, 113, 137, 163, 167, 179, 193, 227, 233, 239, 241, 251, 257, 271, 281, 293, 307, 313, 337, 353, 359, 379, 389, 401, 409, 433, 439, 443, 449, 457, 467, 479, 487, 499, 503, 521, 541, 563, 569, 577, 587, 593, 601, 613, 617, 619, 641, 647, 653, 673, 719, 739, 751, 757, 761, 769, 773, 809, 811, 821, 823, 857, 877, 881, 887, 919, 929, 937, 953, 971, 977, 997, 1009, 1021, 1031, 1033, 1049, 1069, 1091, 1097 (insgesamt 87 Primzahlen)
|
3 |
733 |
17, 97, 103, 113, 137, 163, 193, 227, 239, 241, 257, 307, 337, 353, 389, 401, 409, 433, 443, 449, 479, 487, 577, 593, 613, 619, 641, 647, 653, 673 (insgesamt 30 Primzahlen)
|
4 |
593 |
97, 193, 257, 353, 389, 449, 487, 577 (insgesamt 8 Primzahlen)
|
5 |
563 |
193, 257, 449
|
6 |
547 |
257
|
7 |
547 |
257
|
8 |
541 |
---
|
Eigenschaften
- Für die Potenz
gibt es nur vier Higgs-Primzahlen:
- 2, 3, 7, 43
- Beweis:
- Angenommen, es gibt eine Primzahl
(die nächste ist ), welche eine Higgs-Primzahl für die Potenz ist. Dann muss ein Teiler aller vorherigen Higgs-Primzahlen für die Potenz , also von sein. Dies kann aber nicht der Fall sein, weil kein Teiler der kleineren Zahl sein kann. Somit scheiden alle Primzahlen aus. Alle Primzahlen scheiden durch einfache Computer-Berechnungen aus. ![{\displaystyle \Box }](https://wikimedia.org/api/rest_v1/media/math/render/svg/029b77f09ebeaf7528fc831fe57848be51f2240b)
- Alle bekannten Fermatschen Primzahlen
sind keine Higgs-Primzahlen für die -ten Potenzen mit .
- Beweis:
- Man kann mittels Computer-Einsatz relativ schnell berechnen, dass
- die erste Fermatsche Primzahl
keine Higgs-Primzahl für ist.
- die zweite Fermatsche Primzahl
keine Higgs-Primzahl für ist.
- die dritte Fermatsche Primzahl
keine Higgs-Primzahl für ist.
- die vierte Fermatsche Primzahl
keine Higgs-Primzahl für ist.
- die fünfte und letzte bekannte Fermatsche Primzahl
keine Higgs-Primzahl für ist. ![{\displaystyle \Box }](https://wikimedia.org/api/rest_v1/media/math/render/svg/029b77f09ebeaf7528fc831fe57848be51f2240b)
- Etwa ein Fünftel der Primzahlen unter einer Million sind Higgs-Primzahlen.[1]
- Die Entdecker dieser Eigenschaft folgerten daraus, dass, selbst wenn die Anzahl der Higgs-Primzahlen für die Potenz
endlich ist, „eine Computerzählung nicht möglich ist“.
Ungelöste Probleme
- Es ist nicht bekannt, ob unendlich viele Higgs-Primzahlen für Exponenten
existieren.
Einzelnachweise
- ↑ Stanley Burris, Simon Lee: Tarski's high school identities. American Mathematical Monthly 100 (3), 1993, S. 231–236, abgerufen am 2. Juli 2018.
formelbasiert
|
Carol ((2n − 1)2 − 2) |
Doppelte Mersenne (22p − 1 − 1) |
Fakultät (n! ± 1) |
Fermat (22n + 1) |
Kubisch (x3 − y3)/(x − y) |
Kynea ((2n + 1)2 − 2) |
Leyland (xy + yx) |
Mersenne (2p − 1) |
Mills (A3n) |
Pierpont (2u⋅3v + 1) |
Primorial (pn# ± 1) |
Proth (k⋅2n + 1) |
Pythagoreisch (4n + 1) |
Quartisch (x4 + y4) |
Thabit (3⋅2n − 1) |
Wagstaff ((2p + 1)/3) |
Williams ((b-1)⋅bn − 1) |
Woodall (n⋅2n − 1)
|
Primzahlfolgen
|
Bell |
Fibonacci |
Lucas |
Motzkin |
Pell |
Perrin
|
eigenschaftsbasiert
|
Elitär |
Fortunate |
Gut |
Glücklich |
Higgs |
Hochkototient |
Isoliert |
Pillai |
Ramanujan |
Regulär |
Stark |
Stern |
Wall–Sun–Sun |
Wieferich |
Wilson
|
basisabhängig
|
Belphegor |
Champernowne |
Dihedral |
Einzigartig |
Fröhlich |
Keith |
Lange |
Minimal |
Mirp |
Permutierbar |
Primeval |
Palindrom |
Repunit-Primzahl ((10n − 1)/9) |
Schwach |
Smarandache–Wellin |
Strobogrammatisch |
Tetradisch |
Trunkierbar |
Zirkular
|
basierend auf Tupel
|
Ausbalanciert (p − n, p, p + n) |
Chen |
Cousin (p, p + 4) |
Cunningham (p, 2p ± 1, …) |
Drilling (p, p + 2 oder p + 4, p + 6) |
Konstellation |
Sexy (p, p + 6) |
Sichere (p, (p − 1)/2) |
Sophie Germain (p, 2p + 1) |
Vierling (p, p + 2, p + 6, p + 8) |
Zwilling (p, p + 2) |
Zwillings-Bi-Kette (n ± 1, 2n ± 1, …)
|
nach Größe
|
Titanisch (1.000+ Stellen) |
Gigantisch (10.000+ Stellen) |
Mega (1.000.000+ Stellen) |
Beva (1.000.000.000+ Stellen)
|
Information related to Higgs-Primzahl |