Common side effects include nausea and diarrhea.[6] Potentially serious side effects include kidney problems and low platelets.[6] Greater care is recommended in those with poor liver or kidney function.[6] It is generally considered safe for use in pregnancy with no harm having been observed.[6][8] It appears to be safe during breastfeeding.[9][10] Aciclovir is a nucleoside analogue that mimics guanosine.[6] It works by decreasing the production of the virus's DNA.[6]
Prevention of herpes viruses in immunocompromised people (such as people undergoing cancer chemotherapy)[17]
Its effectiveness in treating Epstein–Barr virus infections is less clear.[6] It has not been found to be useful for infectious mononucleosis due to Epstein-Barr virus.[18]Valaciclovir and acyclovir act by inhibiting viral DNA replication, but as of 2016 there was little evidence that they are effective against Epstein–Barr virus, they are expensive, they risk causing resistance to antiviral agents, and (in 1% to 10% of cases) can cause unpleasant side effects.[19]
Aciclovir taken by mouth does not appear to decrease the risk of pain after shingles.[20] In those with herpes of the eye, aciclovir may be more effective and safer than idoxuridine.[21] It is not clear if aciclovir eye drops are more effective than brivudine eye drops.[21]
Intravenous aciclovir is effective to treat severe medical conditions caused by different species of the herpes virus family, including severe localized infections of herpes virus, severe genital herpes, chickenpox and herpesviral encephalitis. It is also effective in systemic or traumatic herpes infections, eczema herpeticum and herpesviral meningitis.
Reviews of research dating from the 1980s show there is some effect in reducing the number and duration of lesions if aciclovir is applied at an early stage of an outbreak.[22] Research shows effectiveness of topical aciclovir in both the early and late stages of the outbreak as well as improving methodologically and in terms of statistical certainty from previous studies.[23] Aciclovir trials show that this agent has no role in preventing HIV transmission, but it can help slow HIV disease progression in people not taking anti-retroviral therapy (ART). This finding emphasizes the importance of testing simple, inexpensive non-ART strategies, such as aciclovir and cotrimoxazole, in people with HIV.[24]
Pregnancy
The CDC and others have declared that during severe recurrent or first episodes of genital herpes, aciclovir may be used.[25] For severe HSV infections (especially disseminated HSV), IV aciclovir may also be used.[26]
Studies in mice, rabbits and rats (with doses more than 10 times the equivalent of that used in humans) given during organogenesis have failed to demonstrate birth defects.[27] Studies in rats in which they were given the equivalent to 63 times the standard steady-state humans concentrations of the drug[Note 1] on day 10 of gestation showed head and tail anomalies.[27]
Aciclovir is recommended by the CDC for treatment of varicella during pregnancy, especially during the second and third trimesters.[28]
Aciclovir is excreted in the breast milk, therefore it is recommended that caution should be used in breast-feeding women. It has been shown in limited test studies that the nursing infant is exposed to approximately 0.3 mg/kg/day following oral administration of aciclovir to the mother. If nursing mothers have herpetic lesions near or on the breast, breast-feeding should be avoided.[29][30]
Intravenous aciclovir may cause reversible nephrotoxicity in up to 5% to 10% of patients because of precipitation of aciclovir crystals in the kidney. Aciclovir crystalline nephropathy is more common when aciclovir is given as a rapid infusion and in patients with dehydration and preexisting renal impairment. Adequate hydration, a slower rate of infusion, and dosing based on renal function may reduce this risk.[31][32][33]
The aciclovir metabolite 9-Carboxymethoxymethylguanine (9-CMMG) has been shown to play a role in neurological adverse events, particularly in older people and those with reduced renal function.[34][35][36]
Topical therapy
Aciclovir topical cream is commonly associated (≥1% of patients) with: dry or flaking skin or transient stinging/burning sensations. Infrequent adverse effects include erythema or itch.[15] When applied to the eye, aciclovir is commonly associated (≥1% of patients) with transient mild stinging. Infrequently (0.1–1% of patients), ophthalmic aciclovir is associated with superficial punctate keratitis or allergic reactions.[15]
Drug interactions
Ketoconazole: In-vitro replication studies have found a synergistic, dose-dependent antiviral activity against HSV-1 and HSV-2 when given with aciclovir. However, this effect has not been clinically established and more studies need to be done to evaluate the true potential of this synergy.[37]
Probenecid: Reports of increased half life of aciclovir, as well as decreased urinary excretion and renal clearance have been shown in studies where probenecid is given simultaneously with aciclovir.[29]
Interferon: Synergistic effects when administered with aciclovir and caution should be taken when administering aciclovir to patients receiving IV interferon.[38]
Zidovudine: Although administered often with aciclovir in HIV patients, neurotoxicity has been reported in at least one patient who presented with extreme drowsiness and lethargy 30–60 days after receiving IV aciclovir; symptoms resolved when aciclovir was discontinued.[39]
Detection in biological fluids
Aciclovir may be quantitated in plasma or serum to monitor for drug accumulation in patients with renal dysfunction or to confirm a diagnosis of poisoning in acute overdose victims.[40]
Mechanism of action
Aciclovir is converted by viral thymidine kinase to aciclovir monophosphate, which is then converted by host cell kinases to aciclovir triphosphate (ACV-TP, also known as aciclo-GTP).[27] ACV-TP is a very potent inhibitor of viralDNA replication. ACV-TP competitively inhibits and inactivates the viral DNA polymerase.[41] Its monophosphate form also incorporates into the viral DNA, resulting in chain termination.[27][42][43]
Resistance
Resistance to aciclovir is rare in people with healthy immune systems, but is more common (up to 10%) in people with immunodeficiencies on chronic antiviral prophylaxis (transplant recipients, people with acquired immunodeficiency syndrome due to HIV infection). Mechanisms of resistance in HSV include deficient viral thymidine kinase; and mutations to viral thymidine kinase or DNA polymerase, altering substrate sensitivity.[44][45]
Microbiology
Aciclovir is active against most species in the herpesvirus family. In descending order of activity:[46][47]
Aciclovir is poorly water-soluble and has poor oral bioavailability (15–30%), hence intravenous administration is necessary if high concentrations are required. When orally administered, peak plasma concentration occurs after 1–2 hours. According to the Biopharmaceutical Classification System, aciclovir is a Class III drug, i.e., soluble with low intestinal permeability.[48] Aciclovir has a high distribution rate; protein binding is reported to range from 9 to 33%.[49] The elimination half-life (t1/2) of aciclovir depends according to age group; neonates have a t1/2 of 4 hours, children 1–12 years have a t1/2 of 2–3 hours whereas adults have a t1/2 of 3 hours.[3]
Chemistry
Details of the synthesis of aciclovir were first published by scientists from the University at Buffalo.[50]
In the first step shown, 2,6-dichloropurine was alkylated with 1-benzoyloxy-2-chloromethoxyethane. The chlorine group at the 6-position of the heterocyclic ring is more reactive than the chlorine at the 2-position, hence it can be selectively replaced by an amino group, which was then converted to an amide using nitrous acid. Finally, the remaining chlorine was replaced by the amino group of aciclovir using ammonia in methanol.[51] This synthesis and other methods for preparing the compound have been reviewed.[52]
History
Aciclovir was seen as the start of a new era in antiviral therapy, as it is extremely selective and low in cytotoxicity.[5] Since discovery in mid 1970s, it has been used as an effective drug for the treatment of infections caused by most known species of the herpesvirus family, including herpes simplex and varicella zoster viruses. Nucleosides isolated from a Caribbean sponge, Cryptotethya crypta, were the basis for the synthesis of aciclovir.[53][54][55] It was codiscovered by Howard Schaeffer following his work with Robert Vince, S. Bittner and S. Gurwara on the adenosine analog acycloadenosine which showed promising antiviral activity.[50] Later, Schaeffer joined Burroughs Wellcome and continued the development of aciclovir with pharmacologistGertrude B. Elion.[56] A U.S. patent on aciclovir listing Schaeffer as inventor was issued in 1979.[57] Vince later invented abacavir, an nRTI drug for HIV patients.[58] Elion was awarded the 1988 Nobel Prize in Medicine, partly for the development of aciclovir.[59]
A related prodrug form, valaciclovir came into medical use in 1995. It is converted to aciclovir in the body after absorption.[60]
In 2009, acyclovir in combination with hydrocortisone cream, marketed as Xerese, was approved in the United States for the early treatment of recurrent herpes labialis (cold sores) to reduce the likelihood of ulcerative cold sores and to shorten the lesion healing time in adults and children (six years of age and older).[61][62]
Society and culture
Names
It was originally marketed as Zovirax; patents expired in the 1990s and since then it is generic and is marketed under many brand names worldwide.[1]
^ abcdefghij"Acyclovir". The American Society of Health-System Pharmacists. Archived from the original on 2015-01-05. Retrieved Jan 1, 2015.
^Rafailidis PI, Mavros MN, Kapaskelis A, Falagas ME (November 2010). "Antiviral treatment for severe EBV infections in apparently immunocompetent patients". Journal of Clinical Virology. 49 (3): 151–157. doi:10.1016/j.jcv.2010.07.008. PMID20739216.
^Hamilton R (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 59. ISBN9781284057560.
^"Acyclovir use while Breastfeeding". Mar 10, 2015. Archived from the original on 5 March 2016. Retrieved 8 March 2016. Even with the highest maternal dosages, the dosage of acyclovir in milk is only about 1% of a typical infant dosage and would not be expected to cause any adverse effects in breastfed infants
^World Health Organization (2023). The selection and use of essential medicines 2023: web annex A: World Health Organization model list of essential medicines: 23rd list (2023). Geneva: World Health Organization. hdl:10665/371090. WHO/MHP/HPS/EML/2023.02.
^Elad S, Zadik Y, Hewson I, Hovan A, Correa ME, Logan R, et al. (August 2010). "A systematic review of viral infections associated with oral involvement in cancer patients: a spotlight on Herpesviridea". Supportive Care in Cancer. 18 (8): 993–1006. doi:10.1007/s00520-010-0900-3. PMID20544224. S2CID2969472.
^Centers for Disease Control and Prevention. (January 2006). Epidemiology and prevention of vaccine-preventable diseases (9th ed.). Public Health Foundation. pp. 171–192.
^Brigden D, Rosling AE, Woods NC (July 1982). "Renal function after acyclovir intravenous injection". The American Journal of Medicine. 73 (1A): 182–185. doi:10.1016/0002-9343(82)90087-0. PMID6285711.
^Berry L, Venkatesan P (December 2014). "Aciclovir-induced neurotoxicity: Utility of CSF and serum CMMG levels in diagnosis". Journal of Clinical Virology. 61 (4): 608–610. doi:10.1016/j.jcv.2014.09.001. PMID25440915.
^Chowdhury MA, Derar N, Hasan S, Hinch B, Ratnam S, Assaly R (2016). "Acyclovir-Induced Neurotoxicity: A Case Report and Review of Literature". American Journal of Therapeutics. 23 (3): e941–e943. doi:10.1097/MJT.0000000000000093. PMID24942005. S2CID32983100.
^GlaxoSmithKline. Zovirax® (acyclovir sodium) for injection prescribing information. Research Triangle Park, NC; 2003 Nov
^Bach MC (February 1987). "Possible drug interaction during therapy with azidothymidine and acyclovir for AIDS". The New England Journal of Medicine. 316 (9): 547. doi:10.1056/NEJM198702263160912. PMID3468354.
^Baselt RC (2008). Disposition of toxic drugs and chemicals in man (8th ed.). Foster City, CA: Biomedical Publications. pp. 29–31. ISBN9780962652370.
^ abSchaeffer HJ, Gurwara S, Vince R, Bittner S (April 1971). "Novel substrate of adenosine deaminase". Journal of Medicinal Chemistry. 14 (4): 367–369. doi:10.1021/jm00286a024. PMID5553754.
^US patent 4199574, Schaeffer HJ, "Methods and compositions for treating viral infections and guanine acyclic nucleosides", published 1980-04-22, assigned to Burroughs Wellcome.