An aquifer is an underground layer of water-bearing material, consisting of permeable or fractured rock, or of unconsolidated materials (gravel, sand, or silt). Aquifers vary greatly in their characteristics. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related terms include aquitard, which is a bed of low permeability along an aquifer, and aquiclude (or aquifuge), which is a solid, impermeable area underlying or overlying an aquifer, the pressure of which could lead to the formation of a confined aquifer. The classification of aquifers is as follows: Saturated versus unsaturated; aquifers versus aquitards; confined versus unconfined; isotropic versus anisotropic; porous, karst, or fractured; transboundary aquifer.
Groundwater from aquifers can be sustainably harvested by humans through the use of qanats leading to a well.[1] This groundwater is a major source of fresh water for many regions, however can present a number of challenges such as overdrafting (extracting groundwater beyond the equilibrium yield of the aquifer), groundwater-related subsidence of land, and the salinization or pollution of the groundwater.
Aquifers occur from near-surface to deeper than 9,000 metres (30,000 ft).[2] Those closer to the surface are not only more likely to be used for water supply and irrigation, but are also more likely to be replenished by local rainfall. Although aquifers are sometimes characterized as "underground rivers or lakes," they are actually porous rock saturated with water.[3]
Many desert areas have limestonehills or mountains within them or close to them that can be exploited as groundwater resources.[4] Part of the Atlas Mountains in North Africa, the Lebanon and Anti-Lebanon ranges between Syria and Lebanon, the Jebel Akhdar in Oman, parts of the Sierra Nevada and neighboring ranges in the United States' Southwest, have shallow aquifers that are exploited for their water. Overexploitation can lead to the exceeding of the practical sustained yield; i.e., more water is taken out than can be replenished.
In 2013 large freshwater aquifers were discovered under continental shelves off Australia, China, North America and South Africa. They contain an estimated half a million cubic kilometers of "low salinity" water that could be economically processed into potable water. The reserves formed when ocean levels were lower and rainwater made its way into the ground in land areas that were not submerged until the ice age ended 20,000 years ago. The volume is estimated to be 100 times the amount of water extracted from other aquifers since 1900.[5][6]
Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in the vadose zone below plant roots and is often expressed as a flux to the water table surface. Groundwater recharge also encompasses water moving away from the water table farther into the saturated zone.[7] Recharge occurs both naturally (through the water cycle) and through anthropogenic processes (i.e., "artificial groundwater recharge"), where rainwater and/or reclaimed water is routed to the subsurface.
Classification
An aquitard is a zone within the Earth that restricts the flow of groundwater from one aquifer to another. An aquitard can sometimes, if completely impermeable, be called an aquiclude or aquifuge. Aquitards are composed of layers of either clay or non-porous rock with low hydraulic conductivity.
Groundwater can be found at nearly every point in the Earth's shallow subsurface to some degree, although aquifers do not necessarily contain fresh water. The Earth's crust can be divided into two regions: the saturated zone or phreatic zone (e.g., aquifers, aquitards, etc.), where all available spaces are filled with water, and the unsaturated zone (also called the vadose zone), where there are still pockets of air that contain some water, but can be filled with more water.
Saturated means the pressure head of the water is greater than atmospheric pressure (it has a gauge pressure > 0). The definition of the water table is the surface where the pressure head is equal to atmospheric pressure (where gauge pressure = 0).
Unsaturated conditions occur above the water table where the pressure head is negative (absolute pressure can never be negative, but gauge pressure can) and the water that incompletely fills the pores of the aquifer material is under suction. The water content in the unsaturated zone is held in place by surface adhesive forces and it rises above the water table (the zero-gauge-pressureisobar) by capillary action to saturate a small zone above the phreatic surface (the capillary fringe) at less than atmospheric pressure. This is termed tension saturation and is not the same as saturation on a water-content basis. Water content in a capillary fringe decreases with increasing distance from the phreatic surface. The capillary head depends on soil pore size. In sandy soils with larger pores, the head will be less than in clay soils with very small pores. The normal capillary rise in a clayey soil is less than 1.8 m (6 ft) but can range between 0.3 and 10 m (1 and 33 ft).[8]
The capillary rise of water in a small-diameter tube involves the same physical process. The water table is the level to which water will rise in a large-diameter pipe (e.g., a well) that goes down into the aquifer and is open to the atmosphere.
Aquifers versus aquitards
Aquifers are typically saturated regions of the subsurface that produce an economically feasible quantity of water to a well or spring (e.g., sand and gravel or fractured bedrock often make good aquifer materials).
An aquitard is a zone within the Earth that restricts the flow of groundwater from one aquifer to another.[9] A completely impermeable aquitard is called an aquiclude or aquifuge. Aquitards contain layers of either clay or non-porous rock with low hydraulic conductivity.
In mountainous areas (or near rivers in mountainous areas), the main aquifers are typically unconsolidated alluvium, composed of mostly horizontal layers of materials deposited by water processes (rivers and streams), which in cross-section (looking at a two-dimensional slice of the aquifer) appear to be layers of alternating coarse and fine materials. Coarse materials, because of the high energy needed to move them, tend to be found nearer the source (mountain fronts or rivers), whereas the fine-grained material will make it farther from the source (to the flatter parts of the basin or overbank areas—sometimes called the pressure area). Since there are less fine-grained deposits near the source, this is a place where aquifers are often unconfined (sometimes called the forebay area), or in hydraulic communication with the land surface.
An unconfined aquifer has no impermeable barrier immediately above it, such that the water level can rise in response to recharge. A confined aquifer has an overlying impermeable barrier that prevents the water level in the aquifer from rising any higher. An aquifer in the same geologic unit may be confined in one area and unconfined in another. Unconfined aquifers are sometimes also called water table or phreatic aquifers, because their upper boundary is the water table or phreatic surface (see Biscayne Aquifer). Typically (but not always) the shallowest aquifer at a given location is unconfined, meaning it does not have a confining layer (an aquitard or aquiclude) between it and the surface. The term "perched" refers to ground water accumulating above a low-permeability unit or strata, such as a clay layer. This term is generally used to refer to a small local area of ground water that occurs at an elevation higher than a regionally extensive aquifer. The difference between perched and unconfined aquifers is their size (perched is smaller). Confined aquifers are aquifers that are overlain by a confining layer, often made up of clay. The confining layer might offer some protection from surface contamination.
If the distinction between confined and unconfined is not clear geologically (i.e., if it is not known if a clear confining layer exists, or if the geology is more complex, e.g., a fractured bedrock aquifer), the value of storativity returned from an aquifer test can be used to determine it (although aquifer tests in unconfined aquifers should be interpreted differently than confined ones). Confined aquifers have very low storativity values (much less than 0.01, and as little as 10−5), which means that the aquifer is storing water using the mechanisms of aquifer matrix expansion and the compressibility of water, which typically are both quite small quantities. Unconfined aquifers have storativities (typically called specific yield) greater than 0.01 (1% of bulk volume); they release water from storage by the mechanism of actually draining the pores of the aquifer, releasing relatively large amounts of water (up to the drainable porosity of the aquifer material, or the minimum volumetric water content).
In isotropic aquifers or aquifer layers the hydraulic conductivity (K) is equal for flow in all directions, while in anisotropic conditions it differs, notably in horizontal (Kh) and vertical (Kv) sense.
Semi-confined aquifers with one or more aquitards work as an anisotropic system, even when the separate layers are isotropic, because the compound Kh and Kv values are different (see hydraulic transmissivity and hydraulic resistance).
When calculating flow to drains[10] or flow to wells[11] in an aquifer, the anisotropy is to be taken into account lest the resulting design of the drainage system may be faulty.
Porous, karst, or fractured
To properly manage an aquifer its properties must be understood. Many properties must be known to predict how an aquifer will respond to rainfall, drought, pumping, and contamination. Considerations include where and how much water enters the groundwater from rainfall and snowmelt, how fast and in what direction the groundwater travels, and how much water leaves the ground as springs. Computer models can be used to test how accurately the understanding of the aquifer properties matches the actual aquifer performance.[12]: 192–193, 233–237 Environmental regulations require sites with potential sources of contamination to demonstrate that the hydrology has been characterized.[12]: 3
Porous
Porous aquifers typically occur in sand and sandstone. Porous aquifer properties depend on the depositional sedimentary environment and later natural cementation of the sand grains. The environment where a sand body was deposited controls the orientation of the sand grains, the horizontal and vertical variations, and the distribution of shale layers. Even thin shale layers are important barriers to groundwater flow. All these factors affect the porosity and permeability of sandy aquifers.[13]: 413
Sandy deposits formed in shallow marine environments and in windblown sand dune environments have moderate to high permeability while sandy deposits formed in river environments have low to moderate permeability.[13]: 418 Rainfall and snowmelt enter the groundwater where the aquifer is near the surface. Groundwater flow directions can be determined from potentiometric surface maps of water levels in wells and springs. Aquifer tests and well tests can be used with Darcy's law flow equations to determine the ability of a porous aquifer to convey water.[12]: 177–184
Analyzing this type of information over an area gives an indication how much water can be pumped without overdrafting and how contamination will travel.[12]: 233 In porous aquifers groundwater flows as slow seepage in pores between sand grains. A groundwater flow rate of 1 foot per day (0.3 m/d) is considered to be a high rate for porous aquifers,[14] as illustrated by the water slowly seeping from sandstone in the accompanying image to the left.
Porosity is important, but, alone, it does not determine a rock's ability to act as an aquifer. Areas of the Deccan Traps (a basaltic lava) in west central India are good examples of rock formations with high porosity but low permeability, which makes them poor aquifers. Similarly, the micro-porous (Upper Cretaceous) Chalk Group of south east England, although having a reasonably high porosity, has a low grain-to-grain permeability, with its good water-yielding characteristics mostly due to micro-fracturing and fissuring.
Karst
Karst aquifers typically develop in limestone. Surface water containing natural carbonic acid moves down into small fissures in limestone. This carbonic acid gradually dissolves limestone thereby enlarging the fissures. The enlarged fissures allow a larger quantity of water to enter which leads to a progressive enlargement of openings. Abundant small openings store a large quantity of water. The larger openings form a conduit system that drains the aquifer to springs.[15]
Characterization of karst aquifers requires field exploration to locate sinkholes, swallets, sinking streams, and springs in addition to studying geologic maps.[16]: 4 Conventional hydrogeologic methods such as aquifer tests and potentiometric mapping are insufficient to characterize the complexity of karst aquifers. These conventional investigation methods need to be supplemented with dye traces, measurement of spring discharges, and analysis of water chemistry.[17] U.S. Geological Survey dye tracing has determined that conventional groundwater models that assume a uniform distribution of porosity are not applicable for karst aquifers.[18]
Linear alignment of surface features such as straight stream segments and sinkholes develop along fracture traces. Locating a well in a fracture trace or intersection of fracture traces increases the likelihood to encounter good water production.[19] Voids in karst aquifers can be large enough to cause destructive collapse or subsidence of the ground surface that can initiate a catastrophic release of contaminants.[12]: 3–4 Groundwater flow rate in karst aquifers is much more rapid than in porous aquifers as shown in the accompanying image to the left. For example, in the Barton Springs Edwards aquifer, dye traces measured the karst groundwater flow rates from 0.5 to 7 miles per day (0.8 to 11.3 km/d).[20] The rapid groundwater flow rates make karst aquifers much more sensitive to groundwater contamination than porous aquifers.[16]: 1
In the extreme case, groundwater may exist in underground rivers (e.g., caves underlying karst topography).
Fractured
If a rock unit of low porosity is highly fractured, it can also make a good aquifer (via fissure flow), provided the rock has a hydraulic conductivity sufficient to facilitate movement of water.
Reliance on groundwater will only increase, mainly due to growing water demand by all sectors combined with increasing variation in rainfall patterns.[21] Safe use of groundwater varies substantially by the elements present and use-cases, with significant differences between consumption for humans, livestocks and different crops.[22]
Aquifer depletion is a problem in some areas, especially in northern Africa, where one example is the Great Manmade River project of Libya. However, new methods of groundwater management such as artificial recharge and injection of surface waters during seasonal wet periods has extended the life of many freshwater aquifers, especially in the United States.
Australia
The Great Artesian Basin situated in Australia is arguably the largest groundwater aquifer in the world[23] (over 1.7 million km2 or 0.66 million sq mi). It plays a large part in water supplies for Queensland, and some remote parts of South Australia.
Canada
Discontinuous sand bodies at the base of the McMurray Formation in the Athabasca Oil Sands region of northeastern Alberta, Canada, are commonly referred to as the Basal Water Sand (BWS) aquifers.[24] Saturated with water, they are confined beneath impermeable bitumen-saturated sands that are exploited to recover bitumen for synthetic crude oil production. Where they are deep-lying and recharge occurs from underlying Devonianformations they are saline, and where they are shallow and recharged by surface water they are non-saline. The BWS typically pose problems for the recovery of bitumen, whether by open-pit mining or by in situ methods such as steam-assisted gravity drainage (SAGD), and in some areas they are targets for waste-water injection.[25][26][27]
South America
The Guarani Aquifer, located beneath the surface of Argentina, Brazil, Paraguay, and Uruguay, is one of the world's largest aquifer systems and is an important source of fresh water.[28] Named after the Guarani people, it covers 1,200,000 km2 (460,000 sq mi), with a volume of about 40,000 km3 (9,600 cu mi), a thickness of between 50 and 800 m (160 and 2,620 ft) and a maximum depth of about 1,800 m (5,900 ft).
United States
The Ogallala Aquifer of the central United States is one of the world's great aquifers, but in places it is being rapidly depleted by growing municipal use, and continuing agricultural use. This huge aquifer, which underlies portions of eight states, contains primarily fossil water from the time of the last glaciation. Annual recharge, in the more arid parts of the aquifer, is estimated to total only about 10 percent of annual withdrawals. According to a 2013 report by the United States Geological Survey (USGS), the depletion between 2001 and 2008, inclusive, is about 32 percent of the cumulative depletion during the entire 20th century.[29]
In the United States, the biggest users of water from aquifers include agricultural irrigation and oil and coal extraction.[30] "Cumulative total groundwater depletion in the United States accelerated in the late 1940s and continued at an almost steady linear rate through the end of the century. In addition to widely recognized environmental consequences, groundwater depletion also adversely impacts the long-term sustainability of groundwater supplies to help meet the Nation’s water needs."[29]
An example of a significant and sustainable carbonate aquifer is the Edwards Aquifer[31] in central Texas. This carbonate aquifer has historically been providing high quality water for nearly 2 million people, and even today, is full because of tremendous recharge from a number of area streams, rivers and lakes. The primary risk to this resource is human development over the recharge areas.
^"Aquifers and Groundwater". USGS. ...more than 30,000 feet. On average, however, the porosity and permeability of rocks decrease as their depth below land surface increases; the pores and cracks in rocks at great depths are closed or greatly reduced in size because of the weight of overlying rocks.
^"Aquifers". National Geographic Society. 2019-07-30. Retrieved 2021-09-17.
^The energy balance of groundwater flow applied to subsurface drainage in anisotropic soils by pipes or ditches with entrance resistance. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. On line : [1]Archived 2009-02-19 at the Wayback Machine . Paper based on: R.J. Oosterbaan, J. Boonstra and K.V.G.K. Rao, 1996, "The energy balance of groundwater flow". Published in V.P.Singh and B.Kumar (eds.), Subsurface-Water Hydrology, pp. 153–60, Vol. 2 of Proceedings of the International Conference on Hydrology and Water Resources, New Delhi, India, 1993. Kluwer Academic Publishers, Dordrecht, The Netherlands. ISBN978-0-7923-3651-8 . On line : [2] . The corresponding "EnDrain" software can be downloaded from : [3], or from : [4]
^ILRI (2000), Subsurface drainage by (tube)wells: Well spacing equations for fully and partially penetrating wells in uniform or layered aquifers with or without anisotropy and entrance resistance, 9 pp. Principles used in the "WellDrain" model. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. On line : [5] . Download "WellDrain" software from : [6], or from : [7]
^ abcdeAssaad, Fakhry; LaMoreaux, Philip; Hughes, Travis (2004). Field methods for geologists and hydrogeologists. Berlin, Germany: Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-662-05438-3. ISBN978-3-540-40882-6.
^Dreybrodt, Wolfgang (1988). Processes in karst systems: physics, chemistry, and geology. Springer Series in Physical Environment. Vol. 4. Berlin: Springer. pp. 2–3. doi:10.1007/978-3-642-83352-6. ISBN978-3-642-83354-0.
^Renken, R.; Cunningham, K.; Zygnerski, M.; Wacker, M.; Shapiro, A.; Harvey, R.; Metge, D.; Osborn, C.; Ryan, J. (November 2005). "Assessing the Vulnerability of a Municipal Well Field to Contamination in a Karst Aquifer". Environmental and Engineering Geoscience. 11 (4). GeoScienceWorld: 320. Bibcode:2005EEGeo..11..319R. CiteSeerX10.1.1.372.1559. doi:10.2113/11.4.319.
^Fetter, Charles (1988). Applied Hydrology. Columbus, Ohio: Merrill. pp. 294–295. ISBN978-0-675-20887-1.
^Scanlon, Bridget; Mace, Robert; Barrett, Michael; Smith, Brian (2003). "Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA". Journal of Hydrology. 276 (1–4). Elsevier Science: 142. Bibcode:2003JHyd..276..137S. doi:10.1016/S0022-1694(03)00064-7. S2CID16046040.
^"The Great Artesian Basin"(PDF). Facts: Water Series. Queensland Department of Natural Resources and Water. Archived from the original(PDF) on 13 November 2006. Retrieved 3 January 2007.
^Barson, D., Bachu, S. and Esslinger, P. 2001. Flow systems in the Mannville Group in the east-central Athabasca area and implications for steam-assisted gravity drainage (SAGD) operations for in situ bitumen production. Bulletin of Canadian Petroleum Geology, vol. 49, no. 3, pp. 376–92.
Artikel ini bukan mengenai Jimlimi. Lokasi kota Jimilimé di pulau Anjouan Jimilimé adalah kota yang terletak di pulau Anjouan di Komoro. Koordinat: 12°06′S 44°28′E / 12.100°S 44.467°E / -12.100; 44.467 lbs Kota di KomoroDaftar kota di Komoro • Daftar pulau di KomoroAnjouan (أنجوان) Adda-Daouéni Bazimini Domoni (دومونى) Dzindri Jimilimé Koni-Djodjo Mirontsi Moya (مويا) Mramani (مرمانى) Mutsamudu (موتسامودو) Ongoujou Ouani …
Governmental designation for Alaska from 1884 to 1912 This article is about Alaska during the period of 1884 to 1912. For other uses of the term, see Alaska's at-large congressional district and United States District Court for the District of Alaska. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: District of Alaska – news · ne…
Baguio CityKotaNegara FilipinaProvinsiBenguet Baguio City adalah kota di provinsi Benguet, Filipina. Kota didirikan oleh Amerika Serikat pada tahun 1900. Pada tahun 2007, Baguio City memiliki jumlah penduduk sebesar 301.926 jiwa. Pembagian wilayah Secara politis Baguio City terbagi atas 129 barangay, yaitu: Apugan-Loakan Asin Road Atok Trail Bakakeng Central Bakakeng North Happy Hollow Balsigan Bayan Park West (Bayan Park) Bayan Park East Brookspoint Brookside Cabinet Hill-Teacher’s Camp Camp …
Rapa beralih ke halaman ini. Untuk kegunaan lain, lihat Rapa (disambiguasi). Lihat pula: Brassica rapa Brassica napus Brassica napus Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Rosidae Ordo: Brassicales Famili: Brassicaceae Genus: Brassica Spesies: B. napus Nama binomial Brassica napusL. Brassica napus L. (suku kubis-kubisan atau Brassicaceae) dikenal dari salah satu kelompoknya yang menjadi tumbuhan penghasil minyak penting du…
Romanian rhythmic gymnast Doina StăiculescuStăiculescu at the 1984 OlympicsPersonal informationCountry represented RomaniaBorn (1967-12-07) 7 December 1967 (age 56)Bucharest, RomaniaHeight156 cm (5 ft 1 in)Weight41 kg (90 lb)DisciplineRhythmic gymnastics Medal record Rhythmic Gymnastics Representing Romania Olympic Games 1984 Los Angeles All-around Doina Stăiculescu (born 7 December 1967) is a Romanian individual rhythmic gymnast. She won a silver…
Pour les articles homonymes, voir Villiers. Cet article est une ébauche concernant une commune de la Marne. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aider. …
Pour les articles homonymes, voir Löwenstein (homonymie). Hubertus Prinz zu Löwenstein-Wertheim-FreudenbergFonctionDéputé au Bundestag2e Bundestag allemand (en)6 octobre 1953 - 6 octobre 1957BiographieNaissance 14 octobre 1906KufsteinDécès 28 novembre 1984 (à 78 ans)BonnSépulture Burgfriedhof Bad Godesberg (d)Nationalité allemandeActivités Journaliste, historien, homme politiquePère Maximilian Graf Löwenstein-Scharfeneck (d)Mère Constance Valerie Sophie de Worms (d)Conjoint Hel…
Aerial locomotion in avian dinosaurs A flock of domestic pigeons each in a different phase of its flap. Bird flight is the primary mode of locomotion used by most bird species in which birds take off and fly. Flight assists birds with feeding, breeding, avoiding predators, and migrating. Bird flight includes multiple type of motion, including hovering, taking off, and landing, involves many complex movements. As different bird species adapted over millions of years through evolution for specific…
1207–1579 state in the Cyclades archipelago Duchy of the ArchipelagoDucato dell'arcipelago (Italian)1207–1579 Coat of arms of the Sanudo family Duchy of Naxos, 1450, highlighted within the Aegean SeaStatusClient state*CapitalNaxosCommon languagesVenetian officially,Greek popularlyReligion Roman Catholic,Greek Orthodox popularlyGovernmentFeudal DuchyDuke • 1207–27 Marco I Sanudo• 1383–97 Francesco I Crispo• 1564–66 Giacomo IV Crispo• 1566–79 …
Medication used to treat erectile dysfunction Cialis redirects here. For the Central Asian kingdom, see Karasahr. TadalafilClinical dataPronunciation/təˈdæləfɪl/ tə-DAL-ə-fil Trade namesCialis, Adcirca, othersAHFS/Drugs.comMonographMedlinePlusa604008License data US DailyMed: Tadalafil Pregnancycategory AU: B1[1] Routes ofadministrationBy mouthATC codeG04BE08 (WHO) Legal statusLegal status AU: S4 (Prescription only)[3] UK: POM (Prescr…
Muhammad Amin BughraMuhammad Amin Bughra mengenakan Chapan Hitam di bagian depan Emir Republik Turkestan Timur PertamaMasa jabatan1933 – April 1934Anggota Majelis Nasional Republik China dari provinsi XinjiangMasa jabatan1943 – - Informasi pribadiLahir22 April 1901KhotanMeninggal29 April 1965 (usia 64)TurkiKebangsaanUighurPartai politik Partai Pemuda Kashgar dan Komite untuk Revolusi Nasional[1]HubunganAbdullah Bughra, Nur Ahmad Jan BughraSunting kotak info •…
Final Piala Liga Inggris 2005TurnamenPiala Liga Inggris 2004–2005 Chelsea Liverpool 3 2 Tanggal27 Februari 2005StadionStadion Millennium, CardiffPemain Terbaik John Terry (Chelsea)[1]WasitSteve Bennett (Kent)Penonton71.622[2]← 2004 2006 → Final Piala Liga Inggris 2005 adalah pertandingan final ke-45 dari turnamen sepak bola Piala Liga Inggris untuk menentukan juara musim 2004–2005. Pertandingan ini diselenggarakan pada 27 Februari 2005 di Stadion Millennium. Chels…
Google Chrome untuk AndroidVersi pertama27 Juni 2012; 11 tahun lalu (2012-06-27)GenrePeramban webLisensiFreeware berdasarkan pada Chromium (kebanyakan lisensi BSD)[1] Sunting di Wikidata • Sunting kotak info • L • BBantuan penggunaan templat ini Chrome for Android adalah edisi Google Chrome yang dirilis khusus untuk sistem operasi Android. Pada 7 Februari 2012, Google meluncurkan Google Chrome Beta untuk perangkat Android 4.0 (Ice Cream Sandwich),[7] un…
الدوري الكوري الشمالي لكرة القدم 2017–18 تفاصيل الموسم الدوري الكوري الشمالي لكرة القدم البلد كوريا الشمالية البطل نادي 25 أبريل مباريات ملعوبة 156 عدد المشاركين 13 الدوري الكوري الشمالي لكرة القدم 2017 الدوري الكوري الشمالي لكرة القدم 2018–19 تعديل مصدري - ت…
Pour les articles homonymes, voir Beghetto. Cet article est une ébauche concernant un coureur cycliste italien. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Giuseppe BeghettoInformationsNaissance 8 octobre 1939 (84 ans)TomboloNationalité italienneDistinction Collier d'or du Mérite sportifÉquipes professionnelles 1962-1964Termozeta Dei1965-1966F.B.E. - Termozeta1967Ignis1968Vittadello1969-1970Ferretti197…