Share to: share facebook share twitter share wa share telegram print page

BPP (complexity)

In computational complexity theory, a branch of computer science, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded by 1/3 for all instances. BPP is one of the largest practical classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine.

BPP algorithm (1 run)
Answer
produced
Correct
answer
Yes No
Yes ≥ 2/3 ≤ 1/3
No ≤ 1/3 ≥ 2/3
BPP algorithm (k runs)
Answer
produced
Correct
answer
Yes No
Yes > 1 − 2ck < 2ck
No < 2ck > 1 − 2ck
for some constant c > 0

Informally, a problem is in BPP if there is an algorithm for it that has the following properties:

  • It is allowed to flip coins and make random decisions
  • It is guaranteed to run in polynomial time
  • On any given run of the algorithm, it has a probability of at most 1/3 of giving the wrong answer, whether the answer is YES or NO.

Definition

A language L is in BPP if and only if there exists a probabilistic Turing machine M, such that

  • M runs for polynomial time on all inputs
  • For all x in L, M outputs 1 with probability greater than or equal to 2/3
  • For all x not in L, M outputs 1 with probability less than or equal to 1/3

Unlike the complexity class ZPP, the machine M is required to run for polynomial time on all inputs, regardless of the outcome of the random coin flips.

Alternatively, BPP can be defined using only deterministic Turing machines. A language L is in BPP if and only if there exists a polynomial p and deterministic Turing machine M, such that

  • M runs for polynomial time on all inputs
  • For all x in L, the fraction of strings y of length p(|x|) which satisfy is greater than or equal to 2/3
  • For all x not in L, the fraction of strings y of length p(|x|) which satisfy is less than or equal to 1/3

In this definition, the string y corresponds to the output of the random coin flips that the probabilistic Turing machine would have made. For some applications this definition is preferable since it does not mention probabilistic Turing machines.

In practice, an error probability of 1/3 might not be acceptable; however, the choice of 1/3 in the definition is arbitrary. Modifying the definition to use any constant between 0 and 1/2 (exclusive) in place of 1/3 would not change the resulting set BPP. For example, if one defined the class with the restriction that the algorithm can be wrong with probability at most 1/2100, this would result in the same class of problems. The error probability does not even have to be constant: the same class of problems is defined by allowing error as high as 1/2 − nc on the one hand, or requiring error as small as 2nc on the other hand, where c is any positive constant, and n is the length of input. This flexibility in the choice of error probability is based on the idea of running an error-prone algorithm many times, and using the majority result of the runs to obtain a more accurate algorithm. The chance that the majority of the runs are wrong drops off exponentially as a consequence of the Chernoff bound.[1]

Problems

Unsolved problem in computer science:

All problems in P are obviously also in BPP. However, many problems have been known to be in BPP but not known to be in P. The number of such problems is decreasing, and it is conjectured that P = BPP.

For a long time, one of the most famous problems known to be in BPP but not known to be in P was the problem of determining whether a given number is prime. However, in the 2002 paper PRIMES is in P, Manindra Agrawal and his students Neeraj Kayal and Nitin Saxena found a deterministic polynomial-time algorithm for this problem, thus showing that it is in P.

An important example of a problem in BPP (in fact in co-RP) still not known to be in P is polynomial identity testing, the problem of determining whether a polynomial is identically equal to the zero polynomial, when you have access to the value of the polynomial for any given input, but not to the coefficients. In other words, is there an assignment of values to the variables such that when a nonzero polynomial is evaluated on these values, the result is nonzero? It suffices to choose each variable's value uniformly at random from a finite subset of at least d values to achieve bounded error probability, where d is the total degree of the polynomial.[2]

If the access to randomness is removed from the definition of BPP, we get the complexity class P. In the definition of the class, if we replace the ordinary Turing machine with a quantum computer, we get the class BQP.

Adding postselection to BPP, or allowing computation paths to have different lengths, gives the class BPPpath.[3] BPPpath is known to contain NP, and it is contained in its quantum counterpart PostBQP.

A Monte Carlo algorithm is a randomized algorithm which is likely to be correct. Problems in the class BPP have Monte Carlo algorithms with polynomial bounded running time. This is compared to a Las Vegas algorithm which is a randomized algorithm which either outputs the correct answer, or outputs "fail" with low probability. Las Vegas algorithms with polynomial bound running times are used to define the class ZPP. Alternatively, ZPP contains probabilistic algorithms that are always correct and have expected polynomial running time. This is weaker than saying it is a polynomial time algorithm, since it may run for super-polynomial time, but with very low probability.

Complexity-theoretic properties

Diagram of randomised complexity classes
BPP in relation to other probabilistic complexity classes (ZPP, RP, co-RP, BQP, PP), which generalise P within PSPACE. It is unknown if any of these containments are strict.
Inclusions of complexity classes including P, NP, co-NP, BPP, P/poly, PH, and PSPACE

It is known that BPP is closed under complement; that is, BPP = co-BPP. BPP is low for itself, meaning that a BPP machine with the power to solve BPP problems instantly (a BPP oracle machine) is not any more powerful than the machine without this extra power. In symbols, BPPBPP = BPP.

The relationship between BPP and NP is unknown: it is not known whether BPP is a subset of NP, NP is a subset of BPP or neither. If NP is contained in BPP, which is considered unlikely since it would imply practical solutions for NP-complete problems, then NP = RP and PHBPP.[4]

It is known that RP is a subset of BPP, and BPP is a subset of PP. It is not known whether those two are strict subsets, since we don't even know if P is a strict subset of PSPACE. BPP is contained in the second level of the polynomial hierarchy and therefore it is contained in PH. More precisely, the Sipser–Lautemann theorem states that . As a result, P = NP leads to P = BPP since PH collapses to P in this case. Thus either P = BPP or PNP or both.

Adleman's theorem states that membership in any language in BPP can be determined by a family of polynomial-size Boolean circuits, which means BPP is contained in P/poly.[5] Indeed, as a consequence of the proof of this fact, every BPP algorithm operating on inputs of bounded length can be derandomized into a deterministic algorithm using a fixed string of random bits. Finding this string may be expensive, however. Some weak separation results for Monte Carlo time classes were proven by Karpinski & Verbeek (1987a), see also Karpinski & Verbeek (1987b).

Closure properties

The class BPP is closed under complementation, union and intersection.

Relativization

Relative to oracles, we know that there exist oracles A and B, such that PA = BPPA and PBBPPB. Moreover, relative to a random oracle with probability 1, P = BPP and BPP is strictly contained in NP and co-NP.[6]

There is even an oracle in which (and hence ),[7] which can be iteratively constructed as follows. For a fixed ENP (relativized) complete problem, the oracle will give correct answers with high probability if queried with the problem instance followed by a random string of length kn (n is instance length; k is an appropriate small constant). Start with n=1. For every instance of the problem of length n fix oracle answers (see lemma below) to fix the instance output. Next, provide the instance outputs for queries consisting of the instance followed by kn-length string, and then treat output for queries of length ≤(k+1)n as fixed, and proceed with instances of length n+1.

Lemma — Given a problem (specifically, an oracle machine code and time constraint) in relativized ENP, for every partially constructed oracle and input of length n, the output can be fixed by specifying 2O(n) oracle answers.

Proof

The machine is simulated, and the oracle answers (that are not already fixed) are fixed step-by-step. There is at most one oracle query per deterministic computation step. For the relativized NP oracle, if possible fix the output to be yes by choosing a computation path and fixing the answers of the base oracle; otherwise no fixing is necessary, and either way there is at most 1 answer of the base oracle per step. Since there are 2O(n) steps, the lemma follows.

The lemma ensures that (for a large enough k), it is possible to do the construction while leaving enough strings for the relativized ENP answers. Also, we can ensure that for the relativized ENP, linear time suffices, even for function problems (if given a function oracle and linear output size) and with exponentially small (with linear exponent) error probability. Also, this construction is effective in that given an arbitrary oracle A we can arrange the oracle B to have PAPB and EXPNPA=EXPNPB=BPPB. Also, for a ZPP=EXP oracle (and hence ZPP=BPP=EXP<NEXP), one would fix the answers in the relativized E computation to a special nonanswer, thus ensuring that no fake answers are given.

Derandomization

The existence of certain strong pseudorandom number generators is conjectured by most experts of the field. Such generators could replace true random numbers in any polynomial-time randomized algorithm, producing indistinguishable results. The conjecture that these generators exist implies that randomness does not give additional computational power to polynomial time computation, that is, P = RP = BPP. More strongly, the assumption that P = BPP is in some sense equivalent to the existence of strong pseudorandom number generators.[8]

László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson showed that unless EXPTIME collapses to MA, BPP is contained in[9]

The class i.o.-SUBEXP, which stands for infinitely often SUBEXP, contains problems which have sub-exponential time algorithms for infinitely many input sizes. They also showed that P = BPP if the exponential-time hierarchy, which is defined in terms of the polynomial hierarchy and E as EPH, collapses to E; however, note that the exponential-time hierarchy is usually conjectured not to collapse.

Russell Impagliazzo and Avi Wigderson showed that if any problem in E, where

has circuit complexity 2Ω(n) then P = BPP.[10]

See also

References

  1. ^ Valentine Kabanets, CMPT 710 - Complexity Theory: Lecture 16, October 28, 2003
  2. ^ Madhu Sudan and Shien Jin Ong. Massachusetts Institute of Technology: 6.841/18.405J Advanced Complexity Theory: Lecture 6: Randomized Algorithms, Properties of BPP. February 26, 2003.
  3. ^ "Complexity Zoo:B - Complexity Zoo".
  4. ^ Lance Fortnow, Pulling Out The Quantumness, December 20, 2005
  5. ^ Adleman, L. M. (1978). "Two theorems on random polynomial time". Proceedings of the Nineteenth Annual IEEE Symposium on Foundations of Computing. pp. 75–83.
  6. ^ Bennett, Charles H.; Gill, John (1981), "Relative to a Random Oracle A, P^A != NP^A != co-NP^A with Probability 1", SIAM Journal on Computing, 10 (1): 96–113, doi:10.1137/0210008, ISSN 1095-7111
  7. ^ Heller, Hans (1986), "On relativized exponential and probabilistic complexity classes", Information and Control, 71 (3): 231–243, doi:10.1016/S0019-9958(86)80012-2
  8. ^ Goldreich, Oded (2011). "In a World of P=BPP" (PDF). In Goldreich, Oded (ed.). Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman. Lecture Notes in Computer Science. Vol. 6650. Springer. pp. 191–232. doi:10.1007/978-3-642-22670-0_20.
  9. ^ Babai, László; Fortnow, Lance; Nisan, Noam; Wigderson, Avi (1993). "BPP has subexponential time simulations unless EXPTIME has publishable proofs". Computational Complexity. 3 (4): 307–318. doi:10.1007/bf01275486. S2CID 14802332.
  10. ^ Russell Impagliazzo and Avi Wigderson (1997). "P = BPP if E requires exponential circuits: Derandomizing the XOR Lemma". Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 220–229. doi:10.1145/258533.258590

Read other articles:

Jakob MeisenheimerJakob MeisenheimerLahir(1876-06-14)14 Juni 1876Griesheim (Frankfurt am Main), Kekaisaran JermanMeninggal2 Desember 1934(1934-12-02) (umur 58)Tübingen, JermanTempat tinggalJermanKebangsaanJermanAlmamaterUniversitas MunichDikenal atasKompleks Meisenheimer, Mekanisme rearansemen BeckmannKarier ilmiahInstitusiUniversitas Munich, Universitas Greifswald, Universitas TübingenPembimbing doktoralFriedrich Karl Johannes Thiele Jakob Meisenheimer (14 Juni 1876 – 2 D…

  Grand Prix Amerika Serikat 2009Detail lombaLomba ke 7 dari 17Grand Prix Sepeda Motor musim 2009Tanggal5 Juli 2009Nama resmiRed Bull U.S. Grand Prix[1][2][3]LokasiLaguna Seca RacewaySirkuitFasilitas balapan permanen3.610 km (2.240 mi)MotoGPPole positionPembalap Jorge LorenzoCatatan waktu 1:21.678Putaran tercepatPembalap Dani PedrosaCatatan waktu 1:21.928PodiumPertama Dani PedrosaKedua Valentino RossiKetiga Jorge Lorenzo Grand Prix sepeda motor Amerika…

Elang perut-karat Lophotriorchis kienerii Status konservasiHampir terancamIUCN22696111 TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoAccipitriformesFamiliAccipitridaeGenusLophotriorchisSpesiesLophotriorchis kienerii Tipe taksonomiLophotriorchis lbs Elang perut-karat (Lophotriorchis kienerii) adalah satu jenis burung pemangsa dari keluarga Accipitridae, sub-keluarga Accipitrinae dan genus Lophotriorchis. Elang ini dapat dijumpai di beberapa daerah berhutan tropis dari semenajung Asia Selatan…

Ne doit pas être confondu avec Côte du Rhône. Côtes-du-Rhône Le vignoble de Tain-l'Hermitage. Désignation(s) Côtes-du-Rhône Appellation(s) principale(s) côtes-du-rhône Type d'appellation(s) AOC régionale Reconnue depuis 1937 Pays France Région parente vignoble de la vallée du Rhône Sous-région(s) vallée du Rhône septentrionale et méridionale Localisation Rhône, Loire, Ardèche, Drôme, Vaucluse et Gard Saison deux saisons sèches (hiver et été) etdeux saisons pluvieuses (aut…

Romanian politician Emil BocBoc in 2011Prime Minister of RomaniaIn office22 December 2008 – 6 February 2012PresidentTraian BăsescuDeputyDan Nica (2008–2009)Béla Markó (2009–2012)Preceded byCălin Popescu-TăriceanuSucceeded byCătălin Predoiu (Acting) Mihai Răzvan UngureanuMayor of Cluj-NapocaIncumbentAssumed office 12 July 2012Preceded byRadu Moisin (interim)In officeJuly 2004 – 22 December 2008Preceded byGheorghe FunarSucceeded bySorin ApostuMember of the Cha…

Kew

Pour les articles homonymes, voir Kew (homonymie). Cet article est une ébauche concernant Londres. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. KewSaint Anne's Church à KewGéographiePays  Royaume-UniNation constitutive AngleterreRégion Londres (d)Comté cérémonial Grand LondresBorough londonien borough londonien de Richmond upon ThamesBaigné par TamiseSuperficie 3,3 km2Coordonnées 51° 29′…

Disambiguazione – Se stai cercando altri significati, vedi Malawi (disambigua). Questa voce o sezione sull'argomento Malawi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Malawi (dettagli) (dettagli) (EN) Unity and Freedom(IT) Unità e Libertà Malawi - Localizzazione Dati amministrativiNome completoRepubblica di Malawi Nome ufficiale(NY) Dziko la Malaŵi…

Disambiguazione – Se stai cercando altri significati, vedi Neiße (disambigua). Questa voce sugli argomenti fiumi della Germania e fiumi della Repubblica Ceca è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Questa voce sull'argomento fiumi della Polonia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. NeißeStati Rep. Ceca Polonia Germania Lunghezza252 km Portata media30 m³/s Bacino idrografico4…

BusentoBusento di pusat sejarah CosenzaLokasiNegaraItaliaCiri-ciri fisikMuara sungaiKrati - koordinat39°17′33″N 16°15′32″E / 39.2925°N 16.259°E / 39.2925; 16.259Koordinat: 39°17′33″N 16°15′32″E / 39.2925°N 16.259°E / 39.2925; 16.259Daerah Aliran SungaiAliranKrati→ Teluk Taranto Busento (bahasa Latin: Bucentius[1]) adalah anak sungai kiri sungai Krati, yang mengalir sekitar 95 kilometer (59 mi) di Kala…

City in Altai Krai, Russia For other uses, see Barnaul (disambiguation). City in Altai Krai, RussiaBarnaul БарнаулCity[1]Barnaul as seen from the Nagorny Park FlagCoat of armsAnthem: None[2]Location of Barnaul BarnaulLocation of BarnaulShow map of RussiaBarnaulBarnaul (Altai Krai)Show map of Altai KraiCoordinates: 53°20′55″N 83°46′35″E / 53.34861°N 83.77639°E / 53.34861; 83.77639CountryRussiaFederal subjectAltai Krai[1]Establishe…

Marie-Madeleine Fourcade Marie-Madeleine Fourcade, lahir 8 November 1909 di Marseille dan meninggal 20 Juli 1989 di Paris, merupakan seorang pemimpin pemberontak Prancis jaringan Alliance dengan nama kode Hérisson ('Landak) selama Perang Dunia II di Prancis. Alliance merupakan salah satu jaringan perlawanan terpenting yang bertindak untuk Inggris. Fourcade menggantikan Georges Loustaunau-Lacau (nama kode Navarre)[1] sebagai pemimpin Alliance setelah penangkapannya pada 1941. Dia adalah …

Voce principale: Promozione 1952-1953. Promozione Puglia 1952-1953 Competizione Promozione Sport Calcio Edizione 1ª Organizzatore FIGC Comitato Regionale Puglia Luogo  Italia Risultati Vincitore Audace Cerignola Retrocessioni (le squadre scritte in corsivo sono poi state riammesse)InceditMassafreseBitontoTarantina Cronologia della competizione 1951-1952 1953-1954 Manuale La Promozione fu il massimo campionato regionale di calcio disputato in Puglia nella stagione 1952-1953. La nuova massim…

Combined intelligence agency of the Finnish military Finnish Defence Intelligence AgencyPuolustusvoimien tiedustelulaitosFörsvarsmaktens underrättelsetjänstColours of Defence CommandAgency overviewFormed1 May 2014; 10 years ago (1 May 2014)Preceding agenciesFinnish Intelligence Research EstablishmentFinnish Military Intelligence CentreJurisdictionRepublic of FinlandEmployees150–200 (2014)[1]Annual budget€15 million (2014)[1]Minister responsibleAntti Häkkänen…

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府與…

Pokémon GoldPokémon SilverPokémon Crystal Sampul permainan video versi Amerika Utara.TipePokémon paired versions dan Pokémon trio versions Versi pertamaPokémon Gold dan SilverJP: 21 November 1999AU: 13 October 2000NA: 15 October 2000EU: 6 April 2001KR: 24 April 2002Pokémon CrystalJP: December 14, 2000NA: July 29, 2001AU: September 30, 2001EU: November 2, 2001GenreRole-playingBahasa Daftar Inggris, Italia, Jepang, Jerman, Korea, Prancis dan Spanyol 60 Karakteristik teknisPlatformGame Boy C…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

Донецкая возвышенностьукр. Донецька височина Расположение 48°15′47″ с. ш. 38°52′48″ в. д.HGЯO Страна Украина Донецкая возвышенность Донецкая возвышенность (укр. Донецька височина) находится в юго-восточной Украине, в Донецкой, Луганской и частично Харьковской о…

Indian actress (born 1982) This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Aart…

Town in South AustraliaKingston SESouth AustraliaLobster sculpture located at the entrance to the townKingston SECoordinates36°49′S 139°51′E / 36.817°S 139.850°E / -36.817; 139.850[1]Population1,637 (UCL 2021)[2]Established1861 (town) 3 December 1998 (locality)[1][3]Postcode(s)5275[4]Time zoneACST (UTC+9:30) • Summer (DST)ACDT (UTC+10:30)Location 240 km (149 mi) SE of Adelaide city centre 138 km (86…

Kembali kehalaman sebelumnya