Share to: share facebook share twitter share wa share telegram print page

Cauchy–Binet formula

In mathematics, specifically linear algebra, the Cauchy–Binet formula, named after Augustin-Louis Cauchy and Jacques Philippe Marie Binet, is an identity for the determinant of the product of two rectangular matrices of transpose shapes (so that the product is well-defined and square). It generalizes the statement that the determinant of a product of square matrices is equal to the product of their determinants. The formula is valid for matrices with the entries from any commutative ring.

Statement

Let A be an m×n matrix and B an n×m matrix. Write [n] for the set {1, ..., n}, and for the set of m-combinations of [n] (i.e., subsets of [n] of size m; there are of them). For , write A[m],S for the m×m matrix whose columns are the columns of A at indices from S, and BS,[m] for the m×m matrix whose rows are the rows of B at indices from S. The Cauchy–Binet formula then states

Example: Taking m = 2 and n = 3, and matrices and , the Cauchy–Binet formula gives the determinant

Indeed , and its determinant is which equals from the right hand side of the formula.

Special cases

If n < m then is the empty set, and the formula says that det(AB) = 0 (its right hand side is an empty sum); indeed in this case the rank of the m×m matrix AB is at most n, which implies that its determinant is zero. If n = m, the case where A and B are square matrices, (a singleton set), so the sum only involves S = [n], and the formula states that det(AB) = det(A)det(B).

For m = 0, A and B are empty matrices (but of different shapes if n > 0), as is their product AB; the summation involves a single term S = Ø, and the formula states 1 = 1, with both sides given by the determinant of the 0×0 matrix. For m = 1, the summation ranges over the collection of the n different singletons taken from [n], and both sides of the formula give , the dot product of the pair of vectors represented by the matrices. The smallest value of m for which the formula states a non-trivial equality is m = 2; it is discussed in the article on the Binet–Cauchy identity.

In the case n = 3

Let be three-dimensional vectors.

In the case m > 3, the right-hand side always equals 0.

A simple proof

The following simple proof relies on two facts that can be proven in several different ways:[1]

  1. For any the coefficient of in the polynomial is the sum of the principal minors of .
  2. If and is an matrix and an matrix, then
.

Now, if we compare the coefficient of in the equation , the left hand side will give the sum of the principal minors of while the right hand side will give the constant term of , which is simply , which is what the Cauchy–Binet formula states, i.e.

Proof

There are various kinds of proofs that can be given for the Cauchy−Binet formula. The proof below is based on formal manipulations only, and avoids using any particular interpretation of determinants, which may be taken to be defined by the Leibniz formula. Only their multilinearity with respect to rows and columns, and their alternating property (vanishing in the presence of equal rows or columns) are used; in particular the multiplicative property of determinants for square matrices is not used, but is rather established (the case n = m). The proof is valid for arbitrary commutative coefficient rings.

The formula can be proved in two steps:

  1. use the fact that both sides are multilinear (more precisely 2m-linear) in the rows of A and the columns of B, to reduce to the case that each row of A and each column of B has only one non-zero entry, which is 1.
  2. handle that case using the functions [m] → [n] that map respectively the row numbers of A to the column number of their nonzero entry, and the column numbers of B to the row number of their nonzero entry.

For step 1, observe that for each row of A or column of B, and for each m-combination S, the values of det(AB) and det(A[m],S)det(BS,[m]) indeed depend linearly on the row or column. For the latter this is immediate from the multilinear property of the determinant; for the former one must in addition check that taking a linear combination for the row of A or column of B while leaving the rest unchanged only affects the corresponding row or column of the product AB, and by the same linear combination. Thus one can work out both sides of the Cauchy−Binet formula by linearity for every row of A and then also every column of B, writing each of the rows and columns as a linear combination of standard basis vectors. The resulting multiple summations are huge, but they have the same form for both sides: corresponding terms involve the same scalar factor (each is a product of entries of A and of B), and these terms only differ by involving two different expressions in terms of constant matrices of the kind described above, which expressions should be equal according to the Cauchy−Binet formula. This achieves the reduction of the first step.

Concretely, the multiple summations can be grouped into two summations, one over all functions f:[m] → [n] that for each row index of A gives a corresponding column index, and one over all functions g:[m] → [n] that for each column index of B gives a corresponding row index. The matrices associated to f and g are

where "" is the Kronecker delta, and the Cauchy−Binet formula to prove has been rewritten as

where p(f,g) denotes the scalar factor . It remains to prove the Cauchy−Binet formula for A = Lf and B = Rg, for all f,g:[m] → [n].

For this step 2, if f fails to be injective then Lf and LfRg both have two identical rows, and if g fails to be injective then Rg and LfRg both have two identical columns; in either case both sides of the identity are zero. Supposing now that both f and g are injective maps [m] → [n], the factor on the right is zero unless S = f([m]), while the factor is zero unless S = g([m]). So if the images of f and g are different, the right hand side has only null terms, and the left hand side is zero as well since LfRg has a null row (for i with ). In the remaining case where the images of f and g are the same, say f([m]) = S = g([m]), we need to prove that

Let h be the unique increasing bijection [m] → S, and π,σ the permutations of [m] such that and ; then is the permutation matrix for π, is the permutation matrix for σ, and LfRg is the permutation matrix for , and since the determinant of a permutation matrix equals the signature of the permutation, the identity follows from the fact that signatures are multiplicative.

Using multi-linearity with respect to both the rows of A and the columns of B in the proof is not necessary; one could use just one of them, say the former, and use that a matrix product LfB either consists of a permutation of the rows of Bf([m]),[m] (if f is injective), or has at least two equal rows.

Relation to the generalized Kronecker delta

As we have seen, the Cauchy–Binet formula is equivalent to the following:

where

In terms of generalized Kronecker delta, we can derive the formula equivalent to the Cauchy–Binet formula:

Geometric interpretations

If A is a real m×n matrix, then det(A AT) is equal to the square of the m-dimensional volume of the parallelotope spanned in Rn by the m rows of A. Binet's formula states that this is equal to the sum of the squares of the volumes that arise if the parallelepiped is orthogonally projected onto the m-dimensional coordinate planes (of which there are ).

In the case m = 1 the parallelotope is reduced to a single vector and its volume is its length. The above statement then states that the square of the length of a vector is the sum of the squares of its coordinates; this is indeed the case by the definition of that length, which is based on the Pythagorean theorem.

In tensor algebra, given an inner product space of dimension n, the Cauchy–Binet formula defines an induced inner product on the exterior algebra , namely:

Generalization

The Cauchy–Binet formula can be extended in a straightforward way to a general formula for the minors of the product of two matrices. Context for the formula is given in the article on minors, but the idea is that both the formula for ordinary matrix multiplication and the Cauchy–Binet formula for the determinant of the product of two matrices are special cases of the following general statement about the minors of a product of two matrices. Suppose that A is an m × n matrix, B is an n × p matrix, I is a subset of {1,...,m} with k elements and J is a subset of {1,...,p} with k elements. Then

where the sum extends over all subsets K of {1,...,n} with k elements.

Continuous version

A continuous version of the Cauchy–Binet formula, known as the Andréief-Heine identity[2] or Andréief identity appears commonly in random matrix theory.[3] It is stated as follows: let and be two sequences of integrable functions, supported on . Then

Proof

Let be the permutation group of order N, be the sign of a permutation, be the "inner product".

Forrester[4] describes how to recover the usual Cauchy–Binet formula as a discretisation of the above identity.

Proof

Pick in , pick , such that and the same holds for and . Now plugging in and into the Andreev identity, and simplifying both sides, we get:

The right side is , and the left side is .

References

  1. ^ Tao, Terence (2012). Topics in random matrix theory (PDF). Graduate Studies in Mathematics. Vol. 132. Providence, RI: American Mathematical Society. p. 253. doi:10.1090/gsm/132. ISBN 978-0-8218-7430-1.
  2. ^ C. Andréief, Mem. de la Soc. Sci. de Bordeaux 2, 1 (1883)
  3. ^ Mehta, M.L. (2004). Random Matrices (3rd ed.). Amsterdam: Elsevier/Academic Press. ISBN 0-12-088409-7.
  4. ^ Forrester, Peter J. (2018). "Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882–83". arXiv:1806.10411 [math-ph].
Read more information:

Christina ColeCole in September 2010Lahir08 Mei 1982 (umur 41)London, EnglandAlmamaterOxford School of DramaPekerjaanActressTahun aktif2002–present Christina Cole (lahir 8 Mei 1982) adalah seorang aktris film dan televisi asal Inggris. Ia merupakan seorang sarjana seni dari Oxford School of Drama, Inggris. Ia menjadi bintang utama dalam serial TV Hex, yang disiarkan oleh channel SkyOne Inggris. Dalam serial itu ia berperan sebagai Cassie Hughes. Setelah meninggalkan Hex di season ked…

У этого топонима есть и другие значения, см. Пушкарская улица. Большая Пушкарская улица Перспектива Большой Пушкарской улицы от Каменноостровского проспекта Общая информация Страна Россия Город Санкт-Петербург Район Петроградский Исторический район Петроградская стор…

Augsbourg Armoiries Drapeau Administration Pays Allemagne Land Bavière District(Regierungsbezirk) Souabe Arrondissement(Landkreis) Augsbourg (ville-arrondissement) Bourgmestre(Bürgermeister) Eva Weber (d) (depuis 2020) Code postal 86150, 86199, 86152, 86153, 86154, 86156, 86157, 86159, 86161, 86163, 86165, 86167, 86169 et 86179 Indicatif téléphonique 0821 Immatriculation A Démographie Population 301 586 hab. (2023) Densité 2 053 hab./km2 Géographie Coordonnées 48°…

Untuk kegunaan lain, lihat Munger. Munger atau Monghyr ialah sebuah kota di Distrik Munger, Bihar, India Timur. Dahulu kota ini dikenal akan produk besi, sebagaimana pedang, senjata api, dan juga barang sejenis lain. Dalam cerita Mahabharata, Munger adalah tempat bertahtanya Adipati Karna dari Awangga. Pada tahun 1934, kota ini diguncang gempa bumi, sehingga kota ini direnovasi secara modern tanpa melenyapkan sisi historisnya. Munger terletak di Sungai Gangga pada ketinggian 43 meter. Pada tahun…

Chet HuntleyChet Huntley, 1968Lahir10 Desember 1911Cardwell, Montana, Amerika SerikatMeninggal20 Maret 1974(1974-03-20) (umur 62)Big Sky, Amerika SerikatKebangsaanAmerika SerikatPekerjaanpembawa berita Chester Robert Chet Huntley (10 Desember 1911 – 20 Maret 1974) adalah pembawa berita di televisi Amerika Serikat. Karier Huntley dilahirkan di Cardwell, Montana. Setelah lulus Sekolah Menengah Atas Whitehall di Whitehall, Montana, ia kuliah Montana State College di Bozeman dan…

2E06 Raya Bekasi Pulogebang Halte TransjakartaLetakKotaJakarta TimurDesa/kelurahanUjung Menteng, CakungKodepos13960AlamatJalan Bekasi RayaKoordinat6°11′15″S 106°57′36″E / 6.1874344°S 106.9599844°E / -6.1874344; 106.9599844Koordinat: 6°11′15″S 106°57′36″E / 6.1874344°S 106.9599844°E / -6.1874344; 106.9599844Desain HalteStruktur BRT, median jalan bebas 1 tengah Pintu masukJembatan penyeberangan di sudut Jalan Bekasi RayaG…

Wakil Wali Kota MedanPetahanaAulia Rachmansejak 26 Februari 2021Pemerintah Kota MedanMasa jabatan5 tahun dan dapat dipilih kembali untuk satu kali masa jabatanDibentuk1 April 2000; 23 tahun lalu (2000-04-01)Pejabat pertamaMaulana PohanSitus webSitus web resmi Wakil Wali Kota Medan adalah posisi kedua yang memerintah Kota Medan di bawah Wali Kota Medan. Posisi ini pertama kali dibentuk pada tahun 2000. Daftar Nomor urut Wakil Wali Kota Potret Partai Awal Akhir Masa jabatan Periode Wali …

Hokkaido Consadole Sapporo北海道コンサドーレ札幌Nama lengkapConsadole SapporoJulukanConsa コンサBerdiri1935 (nama lama Toshiba Horikawa-cho S.C.)StadionSapporo Dome, Sapporo(Kapasitas: 41,484)PemilikHokkaido Football ClubKetuaYoshikadu NonomuraManajerKeiichi Zaizen (2013– )LigaDivisi Satu J. League2023ke-12 Kostum kandang Kostum tandang Hokkaido Consadole Sapporo (北海道コンサドーレ札幌code: ja is deprecated , Hokkaidō Konsadōre Sapporo)[1] adalah klub sepak …

Alain IIIAdipati BretagneBerkuasa20 November 1008 - 1 Oktober 1040PendahuluGeoffroi IPenerusConan IIWaliHawise dari Normandia (wali penguasa 1008-1026)Informasi pribadiKelahiranskt. 997Kematian1 Oktober 1040VimoutiersWangsaWangsa RennesAyahGeoffroi IIbuHawise dari NormandiaPasanganBerthe dari BloisAnakConan IIHavoiseAgamaKatolik Roma Alain III dari Rennes (997 – 1 Oktober 1040) (bahasa Prancis: Alain III de Bretagne) adalah Comte Rennes dan Adipati Bretagne dengan hak suksesi dari 1008 hingga …

Untuk perusahaan asal Hertfordshire, Britania Raya yang kini memegang aset fotografi dari perusahaan ini, lihat Kodak Alaris. Untuk penggunaan lain, lihat Kodak (disambiguasi). Artikel ini bukan mengenai Kodiak. Eastman Kodak CompanyJenisPerusahaan publikKode emitenNYSE: KODKKomponen Indeks Russell 2000IndustriSeni grafisTeknologi pencitraanBarang konsumenPendahuluEastman Dry Plate and Film CompanyDidirikan23 Mei 1892; 131 tahun lalu (1892-05-23)PendiriGeorge EastmanHenry A. StrongKantorpus…

Pancal 15LahirIswanto31 Maret 1985 (umur 39)Grobogan, Jawa Tengah, IndonesiaPekerjaanPemusik, produser rekaman, Penyanyi, Pencipta laguSuami/istriSindy PurbawatiAnakNaila Permata IssiOrang tuaSuwigi (ayah)Suwarni (ibu)Karier musikAsal Kota Tangerang SelatanGenrePop, Reggae, Campursari, Rock dan DangdutInstrumenVokal, gitar, pianoTahun aktif2008–sekarangLabelPancal Records, GP RecordsAnggotaPancal RecordsSitus webpancalrecords.com Iswanto atau akrab dipanggil dengan nama Mas Pancal atau Pa…

SMA Negeri 17 JakartaInformasiDidirikan16 Oktober 1966JenisNegeriAkreditasiAKepala SekolahDrs. Hardi Kusdiat, M.SiJurusan atau peminatanIPA dan IPSRentang kelasX IPA, X IPS, XI IPA, XI IPS, XII IPA, XII IPSKurikulumKurikulum Tingkat Satuan PendidikanAlamatLokasiJl. Mangga Besar IV I No.27, RT.3/RW.1, Kota Tua, Taman Sari, 11150, Jakarta Barat, DKI JakartaTel./Faks.(021)6392046Situs webhttp://sman17jkt.sch.id/Surelsma17.jakarta@gmail.com info@sman17jkt.sch.idMoto SMA Negeri (SMAN) 17 Ja…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Aktor Utama Terbaik Festival Film Wartawan Indonesia – berita · surat kabar · buku · cendekiawan · JSTOR Penghargaan FFWI Aktor Utama Terbaik merupakan salah satu kategori yang diberikan pada ajang pengharg…

2003 single by the White Stripes Seven Nation ArmySingle by the White Stripesfrom the album Elephant B-sideGood to MeReleasedFebruary 17, 2003 (2003-02-17)RecordedApril 2002[1]StudioToe Rag Studios, LondonGenre Alternative rock garage rock blues rock punk blues Length3:52Label V2 XL Third Man Songwriter(s)Jack WhiteProducer(s)Jack WhiteThe White Stripes singles chronology Candy Cane Children (2002) Seven Nation Army (2003) I Just Don't Know What to Do with Myself (2003) Mu…

Window in the ceiling-roof This article is about roof windows. For other uses, see Skylight (disambiguation). Skylight in the rotunda of Centro Cultural Banco do Brasil in Rio de Janeiro. Oculus of the Pantheon, Rome, an open skylight. Skylight in the vault in the Chapel of the Constable of the Burgos Cathedral, a glazed closed skylight from the 15th century A skylight (sometimes called a rooflight) is a light-permitting structure or window, usually made of transparent or translucent glass,[…

Community of San Diego in CaliforniaPacific Beach, San DiegoCommunity of San DiegoPacific BeachThe beach at Pacific Beach looking southNickname: P.B.Pacific Beach, San DiegoLocation within Central San DiegoCoordinates: 32°47′52″N 117°14′25″W / 32.7978265°N 117.2403142°W / 32.7978265; -117.2403142Country United States of AmericaState CaliforniaCounty San DiegoCity San Diego Pacific Beach is a neighborhood in San Diego, bounded by La Jolla to the …

American prelate The Most ReverendEdward Francis RyanBishop of BurlingtonChurchRoman Catholic ChurchSeeBurlingtonIn officeFebruary 7, 1945 – November 3, 1956PredecessorMatthew Francis BradySuccessorRobert Francis JoyceOrdersOrdinationAugust 10, 1905by Giuseppe CeppetelliConsecrationJanuary 3, 1945by Richard James Cushing, Francis Joseph Spellman, and Francis Patrick KeoughPersonal detailsBorn(1879-03-10)March 10, 1879Lynn, Massachusetts, United StatesDiedNovember 3, 1956(1956-11-…

Katedral MagueloneKatedral Santo PetrusPrancis: Cathédrale Saint-PierreKatedral MagueloneLokasiMagueloneNegaraPrancisDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Agung Montpellier Katedral Maguelone[1] (Prancis: Cathédrale Saint-Pierre de Maguelone ; Cathédrale Saint-Pierre-et-Saint-Paul de Maguelone) adalah sebuah gereja paroki Katolik dan bekas katedral yang terletak sekitar 6 mil (9,7 km) selatan Montpel…

Ethnic Armenians in Krasnodar Krai and Adygea in Russia CherkesogaiTotal population100,000 - 350,000Regions with significant populationsArmavir, MaykopLanguagesArmenian, Adyghe, Kabardian, RussianReligionArmenian Apostolic ChurchRelated ethnic groupsArmenians Part of a series onArmenians Armenian culture Architecture ArtCuisine Dance DressLiterature Music History By country or region Armenia Artsakh (See also Nagorno-Karabakh) Turkey Armenian diasporaRussia France IndiaUnited States Iran Iraq Ge…

 Documentation[voir] [modifier] [historique] [purger] Ce modèle respecte les conventions des Infobox V2. Les infobox version 2 améliorent l’aspect, la simplicité et la flexibilité des infobox de Wikipédia. L’intérêt est d’harmoniser l’apparence par des feuilles de style en cascade, des pictogrammes thématiques, une simplification du code ainsi que la possibilité de généricité qui consiste à fusionner plusieurs modèles en un seul ; a…

Kembali kehalaman sebelumnya