Chlortalidone is considered a first-line medication for treatment of high blood pressure.[2] Some recommend chlortalidone over hydrochlorothiazide.[1][15] A meta-analysis of randomized controlled trials found that chlortalidone is more effective than hydrochlorothiazide for lowering blood pressure, while the two drugs have similar toxicity.[16][17][1][10]
Trials of chlortalidone for high blood pressure found that lower doses of chlortalidone (e.g., 12.5 mg daily in ALLHAT study) had maximal blood pressure lowering effect and that higher doses did not lower it more. Chlortalidone and other thiazide diuretics are effective for lowering high blood pressure in persons with chronic kidney disease, although the risk of adverse effects is higher.[18][19][20][21]
Chlortalidone reduces edema (swelling) by increasing urinary salt and water excretion, lowering intravascular hydrostatic pressure and thereby lowering transcapillary pressure (see Starling Equation). Edema may be caused by either increased hydrostatic pressure or reduced oncotic pressure in the blood vessels. Edema due to increased hydrostatic pressure may be a result of serious cardiopulmonary disease (which reduces glomerular perfusion in the kidney) or to kidney injury or disease (which may reduce glomerular excretion of salt and water by the kidney) or due to relatively benign conditions such as menstrual-related fluid retention, or as an adverse effect of dihydropyridinecalcium channel blockers, which commonly cause swelling of the feet and lower legs. Edema due to decreased oncotic pressure may be a result of leaking of blood proteins through the glomeruli of an injured kidney[24] or a result of diminished synthesis of blood proteins by a damaged liver. Regardless of cause, chlortalidone may reduce the severity of edema by reducing intravascular volume and thereby reducing intravascular hydrostatic pressure.[25]
Bone fracture prevention
Chlortalidone decreases mineral bone loss by promoting calcium retention by the kidney, and by directly stimulating osteoblast differentiation and bone mineral formation.[26] A Cochrane review found tentative evidence that thiazide exposure was associated with a reduced risk of hip fracture.[27] A secondary analysis of data from the ALLHAT study found that chlortalidone reduced risk of hip and pelvis fracture.[28]
Kidney stone prevention
Chlortalidone reduces the amount of calcium excreted in urine, reducing the risk of calcium oxalatekidney stones.[29] In people who have had multiple episodes of calcium oxalate kidney stones, chlortalidone lowers the risk of having another episode of kidney stones.[30] Chlortalidone is more effective than hydrochlorothiazide for lowering urine calcium levels and is therefore probably more effective.[31]
Ménière's disease
Chlortalidone reduces the endolymph volume which reduces the hydrostatic pressure in the inner ear chambers; elevated endolymph pressure in the inner ear is thought to be the cause of Ménière's disease or ’Endolymphatic hydrops.’ Synthesis of evidence from multiple small, low-quality studies indicates that chlortalidone or other thiazide diuretics are effective for Ménière's Disease.[32]
Diabetes insipidus
Chlortalidone (or other thiazide medication) is a key component of treatment of nephrogenic diabetes insipidus. Nephrogenic diabetes insipidus occurs when the kidney is unable to concentrate urine because it has an inadequate response to vasopressin-dependent removal of free water from the renal tubular filtrate. By blocking sodium ion resorption in the distal convoluted tubule, chlortalidone induces an increase in excretion of sodium ion in urine (natriuresis). Giving chlortalidone while simultaneously restricting dietary sodium intake causes mild hypovolemia (low intravascular volume), which induces isotonic reabsorption of solute from the proximal renal tubule, reducing solute delivery in the renal collecting tubule and renal medullary collecting duct. This reduced delivery of solute to the collecting tubule and medullary collecting duct allows increased water resorption and higher concentration of urine, which leads to reversal of nephrogenic diabetes insipidus by a means that is independent of vasopressin.[33]
Adverse effects
Some reviews have found a similar risk as hydrochlorothiazide,[8][9] while other reviews found a higher risk of side effects.[1][10]
Hypokalemia (low blood potassium) occurs occasionally; the risk of hypokalemia is higher in persons who are magnesium deficient[34]
Hypomagnesemia (low blood magnesium) a review of four clinical trials found that low blood magnesium occurred in 20% of persons within a few weeks of beginning treatment with 50 mg of chlortalidone daily.[35] The risk of chlortalidone-associated hypomagnesemia is higher in persons with diabetes mellitus who have low dietary magnesium intake.
Hyponatremia (low blood sodium) occurred in 4.1% of subjects randomized to chlortalidone in the Systolic Hypertension in the Elderly Trial, compared to 1.3% of control subjects.[36] The risk of hyponatremia varies from 5 per 100,000 person-years for those younger than 40 years of age to 730 per 100,000 person-years in those older than 80 years of age.[37][38] Hyponatremia is more likely in persons with certain genetic variants of the prostaglandin transporter SLCO2A1 associated with elevated urinary PGE2 and inappropriately low plasma ADH levels in the setting of low plasma osmolality.[39] Thiazide-associated hyponatremia is often more severe than loop diuretic-associated hyponatremia because the predominant action of thiazides occurs late in the tubular flow, reducing opportunity to apply additional corrective action further along the tubule.[40]
Hypercalcemia (high blood calcium level) can occur in normal persons exposed to chlortalidone but is more likely to occur when persons with sub-clinical hyperparathyroidism are exposed to chlortalidone.[41]
Hyperuricemia, high levels of uric acid in the blood
Chlortalidone reduces reabsorption of sodium and chloride primarily through inhibition of the Na+/Cl− symporter in the apical membrane of distal convoluted tubule cells in the kidney.[44] Although chlortalidone is often referred to as a "thiazide-like" diuretic, it is unlike thiazide diuretics in that, in addition to its inhibition of the Na+/Cl− symporter, it also strongly inhibits multiple isoforms of carbonic anhydrase.[45] Some of chlortalidone's diuretic effect is also due to this inhibition of carbonic anhydrase in the proximal tubule.[46] Chronic exposure to chlortalidone decreases the glomerular filtration rate. Chlortalidone's diuretic effect is diminished in persons with kidney impairment. By increasing the delivery of sodium to the distal renal tubule, chlortalidone indirectly increases potassium excretion via the sodium-potassium exchange mechanism (i.e. apical ROMK/Na channels coupled with basolateral Na+/K ATPases). This can result in a low blood concentration of potassium and chloride as well as a mild metabolic alkalosis; however, the diuretic effect of chlortalidone is not affected by the acid-base balance of the person being treated.
There is uncertainty about the mechanism of the blood pressure-lowering effect that occurs during chronic exposure to chlortalidone.[47] Initially, diuretics lower blood pressure by decreasing cardiac output and reducing plasma and extracellular fluid volume. Eventually, cardiac output returns to normal, and plasma and extracellular fluid volume return to slightly less than normal, but a reduction in peripheral vascular resistance is maintained, thus resulting in an overall lower blood pressure. The reduction in intravascular volume induces an elevation in plasma renin activity and aldosterone secretion, further contributing to the potassium loss associated with thiazide diuretic therapy.
Pharmacokinetics
Chlortalidone is slowly absorbed from the gastrointestinal tract after oral ingestion. It has a long half-life and therefore a prolonged diuretic action, which results in continued diuretic effects despite a skipped dose. This prolonged action of chlortalidone despite missing doses may account for the higher efficacy of chlortalidone compared to the shorter half-life medication, hydrochlorothiazide. Chlortalidone is eliminated from the body mostly by the kidney, as unchanged drug. Thus, in persons with diminished kidney function, the clearance of chlortalidone is reduced and the elimination half-life is increased.[48]
As with other thiazide diuretics, chlortalidone crosses the placenta and is excreted in breast milk.[49] Chlortalidone may suppress lactation, and has been used for this indication. Due to its long half-life, chlortalidone may accumulate in newborns via breast milk, despite receiving only about 6% of the maternal weight-adjusted dose.[50]
Chlortalidone is banned for some sports (including cricket) because it is a diuretic, and can be used to reduce body weight or to mask the concomitant use of performance-enhancing drugs.[52] Sports such as wrestling or boxing categorize athletes according to body weight; taking a diuretic such as chlortalidone may lower body weight, and thereby permit an athlete to compete in a lighter weight class, which would provide an advantage. Diuretics such as chlortalidone also reduce the urine concentration of concomitantly-taken performance-enhancing drugs or of their metabolites, thus making it more difficult to detect these drugs using urine testing.[53]
References
^ abcdeAcelajado MC, Hughes ZH, Oparil S, Calhoun DA (March 2019). "Treatment of Resistant and Refractory Hypertension". Circ. Res. 124 (7): 1061–1070. doi:10.1161/CIRCRESAHA.118.312156. PMC6469348. PMID30920924. A long-acting thiazide-like diuretic, specifically chlorthalidone, if available, is recommended over hydrochlorothiazide (HCTZ) given its superior efficacy and clear benefit demonstrated in multiple outcome studies of hypertension.
^ abcSpringer K (December 2015). "Chlorthalidone vs. Hydrochlorothiazide for Treatment of Hypertension". American Family Physician. 92 (11): 1015–6. PMID26760416.
^World Health Organization (2023). The selection and use of essential medicines 2023: web annex A: World Health Organization model list of essential medicines: 23rd list (2023). Geneva: World Health Organization. hdl:10665/371090. WHO/MHP/HPS/EML/2023.02.
^Roush GC, Abdelfattah R, Song S, Kostis JB, Ernst ME, Sica DA (June 2018). "Hydrochlorothiazide and alternative diuretics versus renin-angiotensin system inhibitors for the regression of left ventricular hypertrophy: a head-to-head meta-analysis". J. Hypertens. 36 (6): 1247–1255. doi:10.1097/HJH.0000000000001691. PMID29465713. S2CID3423953.
^Khan S, Floris M, Pani A, Rosner MH (July 2016). "Sodium and Volume Disorders in Advanced Chronic Kidney Disease". Adv Chronic Kidney Dis. 23 (4): 240–6. doi:10.1053/j.ackd.2015.12.003. PMID27324677.
^O'Brien JG, Chennubhotla SA, Chennubhotla RV (June 2005). "Treatment of edema". Am Fam Physician. 71 (11): 2111–7. PMID15952439.
^Pearle MS, Roehrborn CG, Pak CY (November 1999). "Meta-analysis of randomized trials for medical prevention of calcium oxalate nephrolithiasis". J. Endourol. 13 (9): 679–85. doi:10.1089/end.1999.13.679. PMID10608521. S2CID2514178.
^Wolfgram DF, Gundu V, Astor BC, Jhagroo RA (August 2013). "Hydrochlorothiazide compared to chlorthalidone in reduction of urinary calcium in patients with kidney stones". Urolithiasis. 41 (4): 315–22. doi:10.1007/s00240-013-0568-5. PMID23660825. S2CID10227907.
^Crowson MG, Patki A, Tucci DL (May 2016). "A Systematic Review of Diuretics in the Medical Management of Ménière's Disease". Otolaryngol Head Neck Surg. 154 (5): 824–34. doi:10.1177/0194599816630733. PMID26932948. S2CID24741244.
^Pak CY (October 2000). "Correction of thiazide-induced hypomagnesemia by potassium-magnesium citrate from review of prior trials". Clin. Nephrol. 54 (4): 271–5. PMID11076102.
^"Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group". JAMA. 265 (24): 3255–64. June 1991. doi:10.1001/jama.1991.03460240051027. PMID2046107.
^Mulley BA, Parr GD, Pau WK, Rye RM, Mould JJ, Siddle NC (May 1978). "Placental transfer of chlorthalidone and its elimination in maternal milk". Eur. J. Clin. Pharmacol. 13 (2): 129–31. doi:10.1007/bf00609757. PMID658109. S2CID22930934.
^National Institute of Child Health and Human Development (2006). "Chlorthalidone". Drugs and Lactation Database (LactMed) [Internet]. Bethesda (MD). PMID30000622. NBK501562. Retrieved 13 December 2018.
^National Center for Biotechnology Information. PubChem Compound Database; CID=2732, "Chlorthalidone". PubChem. U.S. National Library of Medicine.