Collision resistance
In cryptography, collision resistance is a property of cryptographic hash functions: a hash function H is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs a and b where a ≠ b but H(a) = H(b).[1]: 136 The pigeonhole principle means that any hash function with more inputs than outputs will necessarily have such collisions;[1]: 136 the harder they are to find, the more cryptographically secure the hash function is. The "birthday paradox" places an upper bound on collision resistance: if a hash function produces N bits of output, an attacker who computes only 2N/2 (or ) hash operations on random input is likely to find two matching outputs. If there is an easier method to do this than brute-force attack, it is typically considered a flaw in the hash function.[2] Cryptographic hash functions are usually designed to be collision resistant. However, many hash functions that were once thought to be collision resistant were later broken. MD5 and SHA-1 in particular both have published techniques more efficient than brute force for finding collisions.[3][4] However, some hash functions have a proof that finding collisions is at least as difficult as some hard mathematical problem (such as integer factorization or discrete logarithm). Those functions are called provably secure.[2] DefinitionA family of functions {hk : {0, 1}m(k) → {0, 1}l(k)} generated by some algorithm G is a family of collision-resistant hash functions, if |m(k)| > |l(k)| for any k, i.e., hk compresses the input string, and every hk can be computed within polynomial time given k, but for any probabilistic polynomial algorithm A, we have
where negl(·) denotes some negligible function, and n is the security parameter.[5] Weak and strong collision resistanceThere are two different types of collision resistance. A hash function has weak collision resistance when, given a hashing function H and an x, no other x' can be found such that H(x)=H(x'). In words, when given an x, it is not possible to find another x' such that the hashing function would create a collision. A hash function has strong collision resistance when, given a hashing function H, no arbitrary x and x' can be found where H(x)=H(x'). In words, no two x's can be found where the hashing function would create a collision. RationaleCollision resistance is desirable for several reasons.
See also
References
|